Spaces:
Running
Running
File size: 12,462 Bytes
9dc639f 74221f2 9dc639f 1eb0002 293661c 9dc639f df1f812 1eb0002 293661c 53b33ac df1f812 53b33ac fc48f50 db87ae8 293661c db87ae8 78bd826 df1f812 0ef5d8a df1f812 0ef5d8a 1fc8ba9 df1f812 1fc8ba9 9bce9c2 c947e4c 1eb0002 726773c e8182c5 864c041 df1f812 74221f2 1eb0002 74221f2 1eb0002 74221f2 1eb0002 54fafa1 1eb0002 b0739e4 1eb0002 db87ae8 19fdb92 1eb0002 19fdb92 1eb0002 19fdb92 1eb0002 0aef3aa 53b33ac 1eb0002 9724455 1eb0002 9724455 1eb0002 53b33ac df1f812 1fc8ba9 1eb0002 df1f812 1fc8ba9 1eb0002 df1f812 1eb0002 df1f812 0036873 df1f812 0036873 df1f812 0036873 df1f812 b0739e4 1eb0002 df1f812 c54b7aa 19fdb92 c54b7aa 1eb0002 9dc639f 19fdb92 1eb0002 df1f812 1eb0002 19fdb92 1eb0002 df1f812 1eb0002 c54b7aa dd52b12 1eb0002 ae2e497 df1f812 1eb0002 fa78b18 3c486f4 df1f812 3c486f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import getpass
import spacy
import pandas as pd
from typing import Optional, List, Dict, Any
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import DuckDuckGoSearchTool, ManagedAgent
from pydantic import BaseModel, Field, ValidationError, validator
from mistralai import Mistral
# Import Google Gemini model
from langchain_google_genai import ChatGoogleGenerativeAI
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
# Setup ChatGoogleGenerativeAI for Gemini
# Ensure GOOGLE_API_KEY is set in your environment variables.
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.5,
max_retries=2,
google_api_key=os.environ.get("GEMINI_API_KEY"),
# Additional parameters or safety_settings can be added here if needed
)
# Initialize ManagedAgent for web search using Gemini
# pydantic_agent = ManagedAgent(
# llm=ChatGoogleGenerativeAI(
# model="gemini-1.5-pro",
# temperature=0.5,
# max_retries=2,
# google_api_key=os.environ.get("GEMINI_API_KEY"),
# ),
# tools=[DuckDuckGoSearchTool()]
# )
class QueryInput(BaseModel):
query: str = Field(..., min_length=1, description="The input query string")
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string")
if v.strip() == "":
raise ValueError("Query cannot be empty or just whitespace")
return v.strip()
class ModerationResult(BaseModel):
is_safe: bool = Field(..., description="Whether the content is safe")
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
original_text: str = Field(..., description="The original input text")
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
def sanitize_message(message: Any) -> str:
"""Sanitize message input to ensure it's a valid string."""
try:
if hasattr(message, 'content'):
return str(message.content).strip()
if isinstance(message, dict) and 'content' in message:
return str(message['content']).strip()
if isinstance(message, list) and len(message) > 0:
if isinstance(message[0], dict) and 'content' in message[0]:
return str(message[0]['content']).strip()
if hasattr(message[0], 'content'):
return str(message[0].content).strip()
return str(message).strip()
except Exception as e:
raise RuntimeError(f"Error in sanitize function: {str(e)}")
def extract_main_topic(query: str) -> str:
try:
query_input = QueryInput(query=query)
doc = nlp(query_input.query)
main_topic = None
for ent in doc.ents:
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
main_topic = ent.text
break
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]:
main_topic = token.text
break
return main_topic if main_topic else "this topic"
except Exception as e:
print(f"Error extracting main topic: {e}")
return "this topic"
def moderate_text(query: str) -> ModerationResult:
try:
query_input = QueryInput(query=query)
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query_input.query}]
)
is_safe = True
categories = {}
if hasattr(response, 'results') and response.results:
categories = {
"violence": response.results[0].categories.get("violence_and_threats", False),
"hate": response.results[0].categories.get("hate_and_discrimination", False),
"dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False),
"selfharm": response.results[0].categories.get("selfharm", False)
}
is_safe = not any(categories.values())
return ModerationResult(
is_safe=is_safe,
categories=categories,
original_text=query_input.query
)
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Moderation failed: {str(e)}")
def classify_query(query: str) -> str:
try:
query_input = QueryInput(query=query)
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
if any(keyword in query_input.query.lower() for keyword in wellness_keywords):
return "Wellness"
class_result = classification_chain.invoke({"query": query_input.query})
classification = class_result.get("text", "").strip()
return classification if classification != "" else "OutOfScope"
except ValidationError as e:
raise ValueError(f"Classification input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Classification failed: {str(e)}")
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
try:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
except Exception as e:
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
"""Build RAG chain using the Gemini LLM directly without a custom class."""
try:
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return chain
except Exception as e:
raise RuntimeError(f"Error building RAG chain: {str(e)}")
def do_web_search(query: str) -> str:
try:
search_tool = DuckDuckGoSearchTool()
search_agent = ManagedAgent(llm=gemini_llm, tools=[search_tool])
search_result = search_agent.run(f"Search for information about: {query}")
return str(search_result).strip()
except Exception as e:
print(f"Web search failed: {e}")
return ""
def merge_responses(csv_answer: str, web_answer: str) -> str:
try:
if not csv_answer and not web_answer:
return "I apologize, but I couldn't find any relevant information."
if not web_answer:
return csv_answer
if not csv_answer:
return web_answer
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}"
except Exception as e:
print(f"Error merging responses: {e}")
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly."
def run_pipeline(query: str) -> str:
try:
print(query)
sanitized_query = sanitize_message(query)
query_input = QueryInput(query=sanitized_query)
topic = extract_main_topic(query_input.query)
moderation_result = moderate_text(query_input.query)
if not moderation_result.is_safe:
return "Sorry, this query contains harmful or inappropriate content."
classification = classify_query(moderation_result.original_text)
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"topic": topic})
return tailor_chain.run({"response": refusal_text}).strip()
if classification == "Wellness":
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
if isinstance(rag_result, dict) and "result" in rag_result:
csv_answer = str(rag_result["result"]).strip()
else:
csv_answer = str(rag_result).strip()
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
final_merged = merge_responses(csv_answer, web_answer)
return tailor_chain.run({"response": final_merged}).strip()
if classification == "Brand":
rag_result = brand_rag_chain({"query": moderation_result.original_text})
if isinstance(rag_result, dict) and "result" in rag_result:
csv_answer = str(rag_result["result"]).strip()
else:
csv_answer = str(rag_result).strip()
final_merged = merge_responses(csv_answer, "")
return tailor_chain.run({"response": final_merged}).strip()
refusal_text = refusal_chain.run({"topic": topic})
return tailor_chain.run({"response": refusal_text}).strip()
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Error in run_pipeline: {str(e)}")
def run_with_chain(query: str) -> str:
try:
return run_pipeline(query)
except Exception as e:
print(f"Error in run_with_chain: {str(e)}")
return "I apologize, but I encountered an error processing your request. Please try again."
# Initialize chains and vectorstores
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
wellness_rag_chain = build_rag_chain(wellness_vectorstore)
brand_rag_chain = build_rag_chain(brand_vectorstore)
print("Pipeline initialized successfully!")
|