Spaces:
Build error
Build error
import gradio as gr | |
from text_to_animation.model import ControlAnimationModel | |
import os | |
from utils.hf_utils import get_model_list | |
huggingspace_name = os.environ.get("SPACE_AUTHOR_NAME") | |
on_huggingspace = huggingspace_name if huggingspace_name is not None else False | |
examples = [ | |
["an astronaut waving the arm on the moon"], | |
["a sloth surfing on a wakeboard"], | |
["an astronaut walking on a street"], | |
["a cute cat walking on grass"], | |
["a horse is galloping on a street"], | |
["an astronaut is skiing down the hill"], | |
["a gorilla walking alone down the street"], | |
["a gorilla dancing on times square"], | |
["A panda dancing dancing like crazy on Times Square"], | |
] | |
images = [] # str path of generated images | |
initial_frame = None | |
animation_model = None | |
def generate_initial_frames( | |
frames_prompt, | |
model_link, | |
is_safetensor, | |
frames_n_prompt, | |
width, | |
height, | |
cfg_scale, | |
seed, | |
): | |
global images | |
if not model_link: | |
model_link = "dreamlike-art/dreamlike-photoreal-2.0" | |
images = animation_model.generate_initial_frames( | |
frames_prompt, | |
model_link, | |
is_safetensor, | |
frames_n_prompt, | |
width, | |
height, | |
cfg_scale, | |
seed, | |
) | |
return images | |
def select_initial_frame(evt: gr.SelectData): | |
global initial_frame | |
if evt.index < len(images): | |
initial_frame = images[evt.index] | |
print(initial_frame) | |
def create_demo(model: ControlAnimationModel): | |
global animation_model | |
animation_model = model | |
with gr.Blocks() as demo: | |
with gr.Column(visible=True) as frame_selection_col: | |
with gr.Row(): | |
with gr.Column(): | |
frames_prompt = gr.Textbox( | |
placeholder="Prompt", show_label=False, lines=4 | |
) | |
frames_n_prompt = gr.Textbox( | |
placeholder="Negative Prompt (optional)", | |
show_label=False, | |
lines=2, | |
) | |
with gr.Column(): | |
model_link = gr.Textbox( | |
label="Model Link", | |
placeholder="dreamlike-art/dreamlike-photoreal-2.0", | |
info="Give the hugging face model name or URL link to safetensor.", | |
) | |
is_safetensor = gr.Checkbox(label="Safetensors") | |
gen_frames_button = gr.Button( | |
value="Generate Initial Frames", variant="primary" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
width = gr.Slider(32, 2048, value=512, label="Width") | |
height = gr.Slider(32, 2048, value=512, label="Height") | |
cfg_scale = gr.Slider(1, 20, value=7.0, step=0.1, label="CFG scale") | |
seed = gr.Slider( | |
label="Seed", | |
info="-1 for random seed on each run. Otherwise, the seed will be fixed.", | |
minimum=-1, | |
maximum=65536, | |
value=0, | |
step=1, | |
) | |
with gr.Column(scale=3): | |
initial_frames = gr.Gallery( | |
label="Initial Frames", show_label=False | |
).style( | |
columns=[2], rows=[2], object_fit="scale-down", height="auto" | |
) | |
initial_frames.select(select_initial_frame) | |
select_frame_button = gr.Button( | |
value="Select Initial Frame", variant="secondary" | |
) | |
with gr.Column(visible=False) as gen_animation_col: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
gen_animation_button = gr.Button( | |
value="Generate Animation", variant="primary" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
n_prompt = gr.Textbox( | |
label="Negative Prompt (optional)", value="" | |
) | |
if on_huggingspace: | |
video_length = gr.Slider( | |
label="Video length", minimum=8, maximum=16, step=1 | |
) | |
else: | |
video_length = gr.Number( | |
label="Video length", value=8, precision=0 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
info="-1 for random seed on each run. Otherwise, the seed will be fixed.", | |
minimum=-1, | |
maximum=65536, | |
value=0, | |
step=1, | |
) | |
motion_field_strength_x = gr.Slider( | |
label="Global Translation $\\delta_{x}$", | |
minimum=-20, | |
maximum=20, | |
value=12, | |
step=1, | |
) | |
motion_field_strength_y = gr.Slider( | |
label="Global Translation $\\delta_{y}$", | |
minimum=-20, | |
maximum=20, | |
value=12, | |
step=1, | |
) | |
t0 = gr.Slider( | |
label="Timestep t0", | |
minimum=0, | |
maximum=47, | |
value=44, | |
step=1, | |
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1 ", | |
) | |
t1 = gr.Slider( | |
label="Timestep t1", | |
minimum=1, | |
info="Perform DDPM steps from t0 to t1. The larger the gap between t0 and t1, the more variance between the frames. Ensure t0 < t1", | |
maximum=48, | |
value=47, | |
step=1, | |
) | |
chunk_size = gr.Slider( | |
label="Chunk size", | |
minimum=2, | |
maximum=16, | |
value=8, | |
step=1, | |
visible=not on_huggingspace, | |
info="Number of frames processed at once. Reduce for lower memory usage.", | |
) | |
merging_ratio = gr.Slider( | |
label="Merging ratio", | |
minimum=0.0, | |
maximum=0.9, | |
step=0.1, | |
value=0.0, | |
visible=not on_huggingspace, | |
info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).", | |
) | |
with gr.Column(): | |
result = gr.Video(label="Generated Video") | |
inputs = [ | |
prompt, | |
model_link, | |
is_safetensor, | |
motion_field_strength_x, | |
motion_field_strength_y, | |
t0, | |
t1, | |
n_prompt, | |
chunk_size, | |
video_length, | |
merging_ratio, | |
seed, | |
] | |
# gr.Examples(examples=examples, | |
# inputs=inputs, | |
# outputs=result, | |
# fn=None, | |
# run_on_click=False, | |
# cache_examples=on_huggingspace, | |
# ) | |
frame_inputs = [ | |
frames_prompt, | |
model_link, | |
is_safetensor, | |
frames_n_prompt, | |
width, | |
height, | |
cfg_scale, | |
seed, | |
] | |
def submit_select(): | |
show = True | |
if initial_frame is not None: # More to next step | |
return { | |
frame_selection_col: gr.update(visible=not show), | |
gen_animation_col: gr.update(visible=show), | |
} | |
return { | |
frame_selection_col: gr.update(visible=show), | |
gen_animation_col: gr.update(visible=not show), | |
} | |
gen_frames_button.click( | |
generate_initial_frames, | |
inputs=frame_inputs, | |
outputs=initial_frames, | |
) | |
select_frame_button.click( | |
submit_select, inputs=None, outputs=[frame_selection_col, gen_animation_col] | |
) | |
gen_animation_button.click( | |
fn=model.process_text2video, | |
inputs=inputs, | |
outputs=result, | |
) | |
return demo | |