Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import plotly.graph_objects as go | |
# Page config | |
st.set_page_config( | |
page_title="Emotion Detector", | |
page_icon="π", | |
layout="wide" | |
) | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
return tokenizer, model | |
def analyze_text(text, tokenizer, model): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
return probs[0].detach().numpy() | |
def create_emotion_plot(emotions_dict): | |
fig = go.Figure(data=[ | |
go.Bar( | |
x=list(emotions_dict.keys()), | |
y=list(emotions_dict.values()), | |
marker_color=['#FF9999', '#99FF99', '#9999FF', '#FFFF99', '#FF99FF', '#99FFFF', '#FFB366'] | |
) | |
]) | |
fig.update_layout( | |
title="Emotion Analysis Results", | |
xaxis_title="Emotions", | |
yaxis_title="Confidence Score", | |
yaxis_range=[0, 1] | |
) | |
return fig | |
# App title and description | |
st.title("π Text Emotion Analysis") | |
st.markdown(""" | |
This app analyzes the emotional content of your text using a pre-trained emotion detection model. | |
Try typing or pasting some text below! | |
""") | |
# Load model | |
with st.spinner("Loading model..."): | |
tokenizer, model = load_model() | |
# Define emotions | |
emotions = ['anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'] | |
# Text input | |
text_input = st.text_area("Enter your text here:", height=150) | |
# Add example button | |
if st.button("Try an example"): | |
text_input = "I just got the best news ever! I'm so excited and happy I can hardly contain myself! π" | |
st.text_area("Enter your text here:", value=text_input, height=150) | |
if st.button("Analyze Emotions"): | |
if text_input.strip() == "": | |
st.warning("Please enter some text to analyze.") | |
else: | |
with st.spinner("Analyzing emotions..."): | |
# Get predictions | |
probs = analyze_text(text_input, tokenizer, model) | |
emotions_dict = dict(zip(emotions, probs)) | |
# Display results | |
st.subheader("Analysis Results") | |
# Create columns for layout | |
col1, col2 = st.columns([2, 1]) | |
with col1: | |
# Display plot | |
fig = create_emotion_plot(emotions_dict) | |
st.plotly_chart(fig, use_container_width=True) | |
with col2: | |
# Display scores | |
st.subheader("Emotion Scores:") | |
for emotion, score in emotions_dict.items(): | |
st.write(f"{emotion.capitalize()}: {score:.2%}") | |
# Add footer | |
st.markdown("---") | |
st.markdown(""" | |
Created with β€οΈ using Hugging Face Transformers and Streamlit. | |
Model: j-hartmann/emotion-english-distilroberta-base | |
""") |