File size: 13,016 Bytes
23c37e5
 
 
 
 
3ca046d
23c37e5
 
 
6a91e71
23c37e5
 
 
 
 
 
 
 
 
6e60570
23c37e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e60570
23c37e5
6a91e71
 
 
 
 
23c37e5
3c9c988
23c37e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a91e71
 
 
86571af
6a91e71
23c37e5
 
 
 
 
 
 
 
 
 
 
86571af
23c37e5
 
 
 
 
 
 
 
 
 
5fdc31e
 
 
 
23c37e5
 
 
 
6a91e71
 
 
23c37e5
 
 
 
 
6a91e71
23c37e5
3ca046d
 
23c37e5
c241116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca046d
23c37e5
 
c241116
23c37e5
 
3c9c988
6a91e71
 
23c37e5
 
c241116
 
6a91e71
 
c241116
23c37e5
c241116
23c37e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import dataclasses
import warnings

warnings.filterwarnings("ignore")

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
import uuid
import torch.nn.functional as F
from PIL import Image
from pathlib import Path
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor, Attention
from rich import traceback
from torchvision.transforms.functional import to_tensor
from transformers import CLIPTokenizer, CLIPTextModel
from tqdm import tqdm
import spaces

MODEL_ID = "CompVis/stable-diffusion-v1-4"
SEED = 1117
UNET_TIMESTEP = 1

traceback.install()


@dataclasses.dataclass
class AttentionStore:
    index: int
    query: torch.Tensor
    key: torch.Tensor
    value: torch.Tensor
    attention_probs: torch.Tensor


class NewAttnProcessor(AttnProcessor):
    def __init__(
            self,
            save_uncond_attention: bool = True,
            save_cond_attention: bool = True,
            max_cross_attention_maps: int = 64,
            max_self_attention_maps: int = 64,
    ):
        super().__init__()
        self.save_uncond_attn = save_uncond_attention
        self.save_cond_attn = save_cond_attention
        self.max_cross_size = max_cross_attention_maps
        self.max_self_size = max_self_attention_maps

        self.cross_attention_stores = []
        self.self_attention_stores = []

    def _save_attention_store(
            self,
            is_cross: bool,
            q: torch.Tensor,
            k: torch.Tensor,
            v: torch.Tensor,
            attn_probs: torch.Tensor
    ) -> None:
        # Function to split tensors based on conditional probability
        def split_tensors(tensor):
            half_size = tensor.shape[0] // 2
            return tensor[:half_size], tensor[half_size:]

        # Split attention probabilities and q, k, v tensors
        uncond_attn_probs, cond_attn_probs = split_tensors(attn_probs)
        uncond_q, cond_q = split_tensors(q)
        uncond_k, cond_k = split_tensors(k)
        uncond_v, cond_v = split_tensors(v)

        # Select tensors based on flags
        if self.save_cond_attn and self.save_uncond_attn:
            selected_probs, selected_q, selected_k, selected_v = attn_probs, q, k, v
        elif self.save_cond_attn:
            selected_probs, selected_q, selected_k, selected_v = cond_attn_probs, cond_q, cond_k, cond_v
        elif self.save_uncond_attn:
            selected_probs, selected_q, selected_k, selected_v = uncond_attn_probs, uncond_q, uncond_k, uncond_v
        else:
            return

        # Determine max size based on attention type (cross or self)
        max_size = self.max_cross_size if is_cross else self.max_self_size

        # Filter out large attention maps
        if selected_probs.shape[1] > max_size ** 2:
            return

        # Create and append attention store object
        store = AttentionStore(
            index=len(self.cross_attention_stores) if is_cross else len(self.self_attention_stores),
            query=selected_q,
            key=selected_k,
            value=selected_v,
            attention_probs=selected_probs
        )

        target_store = self.cross_attention_stores if is_cross else self.self_attention_stores
        target_store.append(store)
        return

    def __call__(
            self,
            attn: Attention,
            hidden_states: torch.FloatTensor,
            encoder_hidden_states: torch.FloatTensor = None,
            attention_mask: torch.FloatTensor = None,
            temb: torch.FloatTensor = None,
            *args,
            **kwargs,
    ) -> torch.Tensor:
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)

        # Save attention maps
        self._save_attention_store(is_cross=is_cross_attention, q=query, k=key, v=value, attn_probs=attention_probs)

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

    def reset_attention_stores(self) -> None:
        self.cross_attention_stores = []
        self.self_attention_stores = []
        return


device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(MODEL_ID, subfolder="tokenizer")
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained(MODEL_ID, subfolder="text_encoder").to(device)
unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(MODEL_ID, subfolder="unet").to(device)
vae: AutoencoderKL = AutoencoderKL.from_pretrained(MODEL_ID, subfolder="vae").to(device)

unet.set_attn_processor(
    NewAttnProcessor(
        save_uncond_attention=False,
        save_cond_attention=True,
    )
)


@spaces.GPU()
@torch.inference_mode()
def inference(
        image_path: str,
        prompt: str,
        has_include_special_tokens: bool = False,
        progress=gr.Progress(track_tqdm=False)):
    progress(0, "Initializing...")
    image = Image.open(image_path)
    image = image.convert("RGB").resize((512, 512))
    image = to_tensor(image).unsqueeze(0).to(device)

    progress(0.1, "Generating text embeddings...")
    input_ids = tokenizer(
        prompt,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=tokenizer.model_max_length,
    ).input_ids.to(device)

    n_cond_tokens = len(
        tokenizer(
            prompt,
            return_tensors="pt",
            truncation=True,
        ).input_ids[0]
    )

    cond_text_embeddings = text_encoder(input_ids).last_hidden_state[0].to(device)

    uncond_input_ids = tokenizer(
        "",
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=tokenizer.model_max_length,
    ).input_ids.to(device)
    uncond_text_embeddings = text_encoder(uncond_input_ids).last_hidden_state[0].to(device)

    text_embeddings = torch.stack([uncond_text_embeddings, cond_text_embeddings], dim=0)

    progress(0.2, "Encoding the input image...")
    init_image = image.to(device)
    init_latent_dist = vae.encode(init_image).latent_dist

    # Fix the random seed for reproducibility
    progress(0.3, "Generating the latents...")
    generator = torch.Generator(device=device).manual_seed(SEED)
    latent = init_latent_dist.sample(generator=generator)
    latent = latent * vae.config['scaling_factor']  # scaling_factor = 0.18215
    latents = latent.expand(len(image), unet.config['in_channels'], 512 // 8, 512 // 8)
    latents_input = torch.cat([latents] * 2).to(device)

    progress(0.5, "Forwarding the UNet model...")
    _ = unet(latents_input, UNET_TIMESTEP, encoder_hidden_states=text_embeddings)

    attn_processor = next(iter(unet.attn_processors.values()))
    cross_attention_stores = attn_processor.cross_attention_stores

    progress(0.7, "Processing the cross attention maps...")
    cross_attention_probs_list = []
    # 事前に保存しておいた、全ての Cross-Attention 層の出力を取得
    for i, cross_attn_store in enumerate(cross_attention_stores):
        cross_attn_probs = cross_attn_store.attention_probs  # (8, 8x8~64x64, 77)
        n_heads, scale_pow, n_tokens = cross_attn_probs.shape

        # scale: 8, 16, 32, 64
        scale = int(np.sqrt(scale_pow))

        # Multi-head Attentionの平均を取って、1つのAttention Mapにする
        mean_cross_attn_probs = (
            cross_attn_probs
            .permute(0, 2, 1)  # (8, 77, 8x8~64x64)
            .reshape(n_heads, n_tokens, scale, scale)  # (8, 77, 8~64, 8~64)
            .mean(dim=0)  # (77, 8~64, 8~64)
        )

        # scale を 全て 512x512 に合わせる
        mean_cross_attn_probs = F.interpolate(
            mean_cross_attn_probs.unsqueeze(0),
            size=(512, 512),
            mode='bilinear',
            align_corners=True
        ).squeeze(0)  # (77, 512, 512)

        # <bos> と <eos> トークンの間に挿入されたトークンのみを取得
        if has_include_special_tokens:
            mean_cross_attn_probs = mean_cross_attn_probs[:n_cond_tokens, ...]  # (n_tokens, 512, 512)
        else:
            mean_cross_attn_probs = mean_cross_attn_probs[1:n_cond_tokens - 1, ...]  # (n_tokens-2, 512, 512)

        cross_attention_probs_list.append(mean_cross_attn_probs)

    # list -> torch.Tensor
    cross_attention_probs = torch.stack(cross_attention_probs_list)  # (16, n_classes, 512, 512)
    n_layers, n_cond_tokens, _, _ = cross_attention_probs.shape

    progress(0.9, "Post-processing the attention maps...")

    image_list = []
    # 各行ごとに画像を作成し保存
    for i in tqdm(range(cross_attention_probs.shape[0]), desc="Saving images..."):
        fig, ax = plt.subplots(1, n_cond_tokens, figsize=(16, 4))

        for j in range(cross_attention_probs.shape[1]):
            # 各クラスのアテンションマップを Min-Max 正規化 (0~1)
            min_val = cross_attention_probs[i, j].min()
            max_val = cross_attention_probs[i, j].max()
            cross_attention_probs[i, j] = (cross_attention_probs[i, j] - min_val) / (max_val - min_val)

            attn_probs = cross_attention_probs[i, j].cpu().detach().numpy()
            ax[j].imshow(attn_probs, alpha=0.9)
            ax[j].axis('off')
            if has_include_special_tokens:
                ax[j].set_title(tokenizer.decode(input_ids[0, j].item()))
            else:
                ax[j].set_title(tokenizer.decode(input_ids[0, j + 1].item()))

        # 各行ごとの画像を保存
        out_dir = Path("output")
        out_dir.mkdir(exist_ok=True)
        # 一意なランダムファイル名を生成
        unique_filename = str(uuid.uuid4())
        filepath = out_dir / f"{unique_filename}.png"
        plt.savefig(filepath, bbox_inches='tight', pad_inches=0)
        plt.close(fig)

        # 保存した画像をPILで読み込んでリストに追加
        image_list.append(Image.open(filepath))
    attn_processor.reset_attention_stores()
    return image_list


if __name__ == '__main__':
    unet_mapping = [
        "0: Down 64",
        "1: Down 64",
        "2: Down 32",
        "3: Down 32",
        "4: Down 16",
        "5: Down 16",
        "6: Mid 8",
        "7: Up 16",
        "8: Up 16",
        "9: Up 16",
        "10: Up 32",
        "11: Up 32",
        "12: Up 32",
        "13: Up 64",
        "14: Up 64",
        "15: Up 64",
    ]
    ca_output = [gr.Image(type="pil", label=unet_mapping[i]) for i in range(16)]

    iface = gr.Interface(
        title="Stable Diffusion Attention Visualizer",
        description="This is a visualizer for the attention maps of the Stable Diffusion model. ",
        fn=inference,
        inputs=[
            gr.Image(type="filepath", label="Input", width=512, height=512),
            gr.Textbox(label="Prompt", placeholder="e.g.) A photo of dog..."),
            gr.Checkbox(label="Include Special Tokens", value=False),
        ],
        outputs=ca_output,
        cache_examples=True,
        examples=[
            ["assets/aeroplane.png", "plane background", False],
            ["assets/dogcat.png", "a photo of dog", False],
        ]
    )

    iface.launch()