Spaces:
Runtime error
Runtime error
File size: 13,016 Bytes
23c37e5 3ca046d 23c37e5 6a91e71 23c37e5 6e60570 23c37e5 6e60570 23c37e5 6a91e71 23c37e5 3c9c988 23c37e5 6a91e71 86571af 6a91e71 23c37e5 86571af 23c37e5 5fdc31e 23c37e5 6a91e71 23c37e5 6a91e71 23c37e5 3ca046d 23c37e5 c241116 3ca046d 23c37e5 c241116 23c37e5 3c9c988 6a91e71 23c37e5 c241116 6a91e71 c241116 23c37e5 c241116 23c37e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import dataclasses
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
import uuid
import torch.nn.functional as F
from PIL import Image
from pathlib import Path
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor, Attention
from rich import traceback
from torchvision.transforms.functional import to_tensor
from transformers import CLIPTokenizer, CLIPTextModel
from tqdm import tqdm
import spaces
MODEL_ID = "CompVis/stable-diffusion-v1-4"
SEED = 1117
UNET_TIMESTEP = 1
traceback.install()
@dataclasses.dataclass
class AttentionStore:
index: int
query: torch.Tensor
key: torch.Tensor
value: torch.Tensor
attention_probs: torch.Tensor
class NewAttnProcessor(AttnProcessor):
def __init__(
self,
save_uncond_attention: bool = True,
save_cond_attention: bool = True,
max_cross_attention_maps: int = 64,
max_self_attention_maps: int = 64,
):
super().__init__()
self.save_uncond_attn = save_uncond_attention
self.save_cond_attn = save_cond_attention
self.max_cross_size = max_cross_attention_maps
self.max_self_size = max_self_attention_maps
self.cross_attention_stores = []
self.self_attention_stores = []
def _save_attention_store(
self,
is_cross: bool,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_probs: torch.Tensor
) -> None:
# Function to split tensors based on conditional probability
def split_tensors(tensor):
half_size = tensor.shape[0] // 2
return tensor[:half_size], tensor[half_size:]
# Split attention probabilities and q, k, v tensors
uncond_attn_probs, cond_attn_probs = split_tensors(attn_probs)
uncond_q, cond_q = split_tensors(q)
uncond_k, cond_k = split_tensors(k)
uncond_v, cond_v = split_tensors(v)
# Select tensors based on flags
if self.save_cond_attn and self.save_uncond_attn:
selected_probs, selected_q, selected_k, selected_v = attn_probs, q, k, v
elif self.save_cond_attn:
selected_probs, selected_q, selected_k, selected_v = cond_attn_probs, cond_q, cond_k, cond_v
elif self.save_uncond_attn:
selected_probs, selected_q, selected_k, selected_v = uncond_attn_probs, uncond_q, uncond_k, uncond_v
else:
return
# Determine max size based on attention type (cross or self)
max_size = self.max_cross_size if is_cross else self.max_self_size
# Filter out large attention maps
if selected_probs.shape[1] > max_size ** 2:
return
# Create and append attention store object
store = AttentionStore(
index=len(self.cross_attention_stores) if is_cross else len(self.self_attention_stores),
query=selected_q,
key=selected_k,
value=selected_v,
attention_probs=selected_probs
)
target_store = self.cross_attention_stores if is_cross else self.self_attention_stores
target_store.append(store)
return
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
temb: torch.FloatTensor = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# Save attention maps
self._save_attention_store(is_cross=is_cross_attention, q=query, k=key, v=value, attn_probs=attention_probs)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def reset_attention_stores(self) -> None:
self.cross_attention_stores = []
self.self_attention_stores = []
return
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(MODEL_ID, subfolder="tokenizer")
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained(MODEL_ID, subfolder="text_encoder").to(device)
unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(MODEL_ID, subfolder="unet").to(device)
vae: AutoencoderKL = AutoencoderKL.from_pretrained(MODEL_ID, subfolder="vae").to(device)
unet.set_attn_processor(
NewAttnProcessor(
save_uncond_attention=False,
save_cond_attention=True,
)
)
@spaces.GPU()
@torch.inference_mode()
def inference(
image_path: str,
prompt: str,
has_include_special_tokens: bool = False,
progress=gr.Progress(track_tqdm=False)):
progress(0, "Initializing...")
image = Image.open(image_path)
image = image.convert("RGB").resize((512, 512))
image = to_tensor(image).unsqueeze(0).to(device)
progress(0.1, "Generating text embeddings...")
input_ids = tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids.to(device)
n_cond_tokens = len(
tokenizer(
prompt,
return_tensors="pt",
truncation=True,
).input_ids[0]
)
cond_text_embeddings = text_encoder(input_ids).last_hidden_state[0].to(device)
uncond_input_ids = tokenizer(
"",
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
).input_ids.to(device)
uncond_text_embeddings = text_encoder(uncond_input_ids).last_hidden_state[0].to(device)
text_embeddings = torch.stack([uncond_text_embeddings, cond_text_embeddings], dim=0)
progress(0.2, "Encoding the input image...")
init_image = image.to(device)
init_latent_dist = vae.encode(init_image).latent_dist
# Fix the random seed for reproducibility
progress(0.3, "Generating the latents...")
generator = torch.Generator(device=device).manual_seed(SEED)
latent = init_latent_dist.sample(generator=generator)
latent = latent * vae.config['scaling_factor'] # scaling_factor = 0.18215
latents = latent.expand(len(image), unet.config['in_channels'], 512 // 8, 512 // 8)
latents_input = torch.cat([latents] * 2).to(device)
progress(0.5, "Forwarding the UNet model...")
_ = unet(latents_input, UNET_TIMESTEP, encoder_hidden_states=text_embeddings)
attn_processor = next(iter(unet.attn_processors.values()))
cross_attention_stores = attn_processor.cross_attention_stores
progress(0.7, "Processing the cross attention maps...")
cross_attention_probs_list = []
# 事前に保存しておいた、全ての Cross-Attention 層の出力を取得
for i, cross_attn_store in enumerate(cross_attention_stores):
cross_attn_probs = cross_attn_store.attention_probs # (8, 8x8~64x64, 77)
n_heads, scale_pow, n_tokens = cross_attn_probs.shape
# scale: 8, 16, 32, 64
scale = int(np.sqrt(scale_pow))
# Multi-head Attentionの平均を取って、1つのAttention Mapにする
mean_cross_attn_probs = (
cross_attn_probs
.permute(0, 2, 1) # (8, 77, 8x8~64x64)
.reshape(n_heads, n_tokens, scale, scale) # (8, 77, 8~64, 8~64)
.mean(dim=0) # (77, 8~64, 8~64)
)
# scale を 全て 512x512 に合わせる
mean_cross_attn_probs = F.interpolate(
mean_cross_attn_probs.unsqueeze(0),
size=(512, 512),
mode='bilinear',
align_corners=True
).squeeze(0) # (77, 512, 512)
# <bos> と <eos> トークンの間に挿入されたトークンのみを取得
if has_include_special_tokens:
mean_cross_attn_probs = mean_cross_attn_probs[:n_cond_tokens, ...] # (n_tokens, 512, 512)
else:
mean_cross_attn_probs = mean_cross_attn_probs[1:n_cond_tokens - 1, ...] # (n_tokens-2, 512, 512)
cross_attention_probs_list.append(mean_cross_attn_probs)
# list -> torch.Tensor
cross_attention_probs = torch.stack(cross_attention_probs_list) # (16, n_classes, 512, 512)
n_layers, n_cond_tokens, _, _ = cross_attention_probs.shape
progress(0.9, "Post-processing the attention maps...")
image_list = []
# 各行ごとに画像を作成し保存
for i in tqdm(range(cross_attention_probs.shape[0]), desc="Saving images..."):
fig, ax = plt.subplots(1, n_cond_tokens, figsize=(16, 4))
for j in range(cross_attention_probs.shape[1]):
# 各クラスのアテンションマップを Min-Max 正規化 (0~1)
min_val = cross_attention_probs[i, j].min()
max_val = cross_attention_probs[i, j].max()
cross_attention_probs[i, j] = (cross_attention_probs[i, j] - min_val) / (max_val - min_val)
attn_probs = cross_attention_probs[i, j].cpu().detach().numpy()
ax[j].imshow(attn_probs, alpha=0.9)
ax[j].axis('off')
if has_include_special_tokens:
ax[j].set_title(tokenizer.decode(input_ids[0, j].item()))
else:
ax[j].set_title(tokenizer.decode(input_ids[0, j + 1].item()))
# 各行ごとの画像を保存
out_dir = Path("output")
out_dir.mkdir(exist_ok=True)
# 一意なランダムファイル名を生成
unique_filename = str(uuid.uuid4())
filepath = out_dir / f"{unique_filename}.png"
plt.savefig(filepath, bbox_inches='tight', pad_inches=0)
plt.close(fig)
# 保存した画像をPILで読み込んでリストに追加
image_list.append(Image.open(filepath))
attn_processor.reset_attention_stores()
return image_list
if __name__ == '__main__':
unet_mapping = [
"0: Down 64",
"1: Down 64",
"2: Down 32",
"3: Down 32",
"4: Down 16",
"5: Down 16",
"6: Mid 8",
"7: Up 16",
"8: Up 16",
"9: Up 16",
"10: Up 32",
"11: Up 32",
"12: Up 32",
"13: Up 64",
"14: Up 64",
"15: Up 64",
]
ca_output = [gr.Image(type="pil", label=unet_mapping[i]) for i in range(16)]
iface = gr.Interface(
title="Stable Diffusion Attention Visualizer",
description="This is a visualizer for the attention maps of the Stable Diffusion model. ",
fn=inference,
inputs=[
gr.Image(type="filepath", label="Input", width=512, height=512),
gr.Textbox(label="Prompt", placeholder="e.g.) A photo of dog..."),
gr.Checkbox(label="Include Special Tokens", value=False),
],
outputs=ca_output,
cache_examples=True,
examples=[
["assets/aeroplane.png", "plane background", False],
["assets/dogcat.png", "a photo of dog", False],
]
)
iface.launch()
|