Spaces:
Paused
Paused
File size: 1,892 Bytes
2494346 bbedeb2 9905ad3 bbedeb2 9905ad3 bbedeb2 d062d3a cd49d85 9905ad3 ca685d6 bbedeb2 13d1420 bbedeb2 ca685d6 01497eb bbedeb2 827a7ed 7d697f7 16e8fe9 827a7ed 01497eb 7d697f7 01497eb 13d1420 bbedeb2 ca685d6 bbedeb2 2d98a52 01497eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import modules.core as core
import os
import torch
from modules.path import modelfile_path, lorafile_path
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors')
xl_base = core.load_model(xl_base_filename)
xl_base = core.load_lora(xl_base, xl_base_offset_lora_filename, strength_model=0.5, strength_clip=0.0)
del xl_base.vae
xl_refiner = core.load_model(xl_refiner_filename)
@torch.no_grad()
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback):
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
sampled_latent = core.ksampler_with_refiner(
model=xl_base.unet,
positive=positive_conditions,
negative=negative_conditions,
refiner=xl_refiner.unet,
refiner_positive=positive_conditions_refiner,
refiner_negative=negative_conditions_refiner,
refiner_switch_step=switch,
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
callback_function=callback
)
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
images = core.image_to_numpy(decoded_latent)
return images
|