Spaces:
Paused
Paused
File size: 1,846 Bytes
2494346 bbedeb2 9905ad3 bbedeb2 9905ad3 bbedeb2 d062d3a cd49d85 9905ad3 ca685d6 bbedeb2 01497eb bbedeb2 ca685d6 01497eb bbedeb2 827a7ed 7d697f7 16e8fe9 827a7ed 01497eb 7d697f7 01497eb bbedeb2 ca685d6 bbedeb2 2d98a52 01497eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import modules.core as core
import os
import torch
from modules.path import modelfile_path, lorafile_path
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors')
xl_base = core.load_model(xl_base_filename)
xl_base = core.load_lora(xl_base, xl_base_offset_lora_filename, strength_model=0.5, strength_clip=0.0)
del xl_base.vae
xl_refiner = core.load_model(xl_refiner_filename)
@torch.no_grad()
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed):
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
sampled_latent = core.ksampler_with_refiner(
model=xl_base.unet,
positive=positive_conditions,
negative=negative_conditions,
refiner=xl_refiner.unet,
refiner_positive=positive_conditions_refiner,
refiner_negative=negative_conditions_refiner,
refiner_switch_step=switch,
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed
)
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
images = core.image_to_numpy(decoded_latent)
return images
|