Spaces:
Paused
Paused
import torch | |
import comfy.model_base | |
import comfy.ldm.modules.diffusionmodules.openaimodel | |
import comfy.samplers | |
import modules.anisotropic as anisotropic | |
from comfy.samplers import model_management, lcm, math | |
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed | |
sharpness = 2.0 | |
def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, | |
seed=None): | |
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): | |
area = (x_in.shape[2], x_in.shape[3], 0, 0) | |
strength = 1.0 | |
if 'timestep_start' in cond[1]: | |
timestep_start = cond[1]['timestep_start'] | |
if timestep_in[0] > timestep_start: | |
return None | |
if 'timestep_end' in cond[1]: | |
timestep_end = cond[1]['timestep_end'] | |
if timestep_in[0] < timestep_end: | |
return None | |
if 'area' in cond[1]: | |
area = cond[1]['area'] | |
if 'strength' in cond[1]: | |
strength = cond[1]['strength'] | |
adm_cond = None | |
if 'adm_encoded' in cond[1]: | |
adm_cond = cond[1]['adm_encoded'] | |
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] | |
if 'mask' in cond[1]: | |
# Scale the mask to the size of the input | |
# The mask should have been resized as we began the sampling process | |
mask_strength = 1.0 | |
if "mask_strength" in cond[1]: | |
mask_strength = cond[1]["mask_strength"] | |
mask = cond[1]['mask'] | |
assert (mask.shape[1] == x_in.shape[2]) | |
assert (mask.shape[2] == x_in.shape[3]) | |
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength | |
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) | |
else: | |
mask = torch.ones_like(input_x) | |
mult = mask * strength | |
if 'mask' not in cond[1]: | |
rr = 8 | |
if area[2] != 0: | |
for t in range(rr): | |
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1)) | |
if (area[0] + area[2]) < x_in.shape[2]: | |
for t in range(rr): | |
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1)) | |
if area[3] != 0: | |
for t in range(rr): | |
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1)) | |
if (area[1] + area[3]) < x_in.shape[3]: | |
for t in range(rr): | |
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1)) | |
conditionning = {} | |
conditionning['c_crossattn'] = cond[0] | |
if cond_concat_in is not None and len(cond_concat_in) > 0: | |
cropped = [] | |
for x in cond_concat_in: | |
cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] | |
cropped.append(cr) | |
conditionning['c_concat'] = torch.cat(cropped, dim=1) | |
if adm_cond is not None: | |
conditionning['c_adm'] = adm_cond | |
control = None | |
if 'control' in cond[1]: | |
control = cond[1]['control'] | |
patches = None | |
if 'gligen' in cond[1]: | |
gligen = cond[1]['gligen'] | |
patches = {} | |
gligen_type = gligen[0] | |
gligen_model = gligen[1] | |
if gligen_type == "position": | |
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device) | |
else: | |
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device) | |
patches['middle_patch'] = [gligen_patch] | |
return (input_x, mult, conditionning, area, control, patches) | |
def cond_equal_size(c1, c2): | |
if c1 is c2: | |
return True | |
if c1.keys() != c2.keys(): | |
return False | |
if 'c_crossattn' in c1: | |
s1 = c1['c_crossattn'].shape | |
s2 = c2['c_crossattn'].shape | |
if s1 != s2: | |
if s1[0] != s2[0] or s1[2] != s2[2]: # these 2 cases should not happen | |
return False | |
mult_min = lcm(s1[1], s2[1]) | |
diff = mult_min // min(s1[1], s2[1]) | |
if diff > 4: # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much | |
return False | |
if 'c_concat' in c1: | |
if c1['c_concat'].shape != c2['c_concat'].shape: | |
return False | |
if 'c_adm' in c1: | |
if c1['c_adm'].shape != c2['c_adm'].shape: | |
return False | |
return True | |
def can_concat_cond(c1, c2): | |
if c1[0].shape != c2[0].shape: | |
return False | |
# control | |
if (c1[4] is None) != (c2[4] is None): | |
return False | |
if c1[4] is not None: | |
if c1[4] is not c2[4]: | |
return False | |
# patches | |
if (c1[5] is None) != (c2[5] is None): | |
return False | |
if (c1[5] is not None): | |
if c1[5] is not c2[5]: | |
return False | |
return cond_equal_size(c1[2], c2[2]) | |
def cond_cat(c_list): | |
c_crossattn = [] | |
c_concat = [] | |
c_adm = [] | |
crossattn_max_len = 0 | |
for x in c_list: | |
if 'c_crossattn' in x: | |
c = x['c_crossattn'] | |
if crossattn_max_len == 0: | |
crossattn_max_len = c.shape[1] | |
else: | |
crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) | |
c_crossattn.append(c) | |
if 'c_concat' in x: | |
c_concat.append(x['c_concat']) | |
if 'c_adm' in x: | |
c_adm.append(x['c_adm']) | |
out = {} | |
c_crossattn_out = [] | |
for c in c_crossattn: | |
if c.shape[1] < crossattn_max_len: | |
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) # padding with repeat doesn't change result | |
c_crossattn_out.append(c) | |
if len(c_crossattn_out) > 0: | |
out['c_crossattn'] = [torch.cat(c_crossattn_out)] | |
if len(c_concat) > 0: | |
out['c_concat'] = [torch.cat(c_concat)] | |
if len(c_adm) > 0: | |
out['c_adm'] = torch.cat(c_adm) | |
return out | |
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, | |
model_options): | |
out_cond = torch.zeros_like(x_in) | |
out_count = torch.ones_like(x_in) / 100000.0 | |
out_uncond = torch.zeros_like(x_in) | |
out_uncond_count = torch.ones_like(x_in) / 100000.0 | |
COND = 0 | |
UNCOND = 1 | |
to_run = [] | |
for x in cond: | |
p = get_area_and_mult(x, x_in, cond_concat_in, timestep) | |
if p is None: | |
continue | |
to_run += [(p, COND)] | |
if uncond is not None: | |
for x in uncond: | |
p = get_area_and_mult(x, x_in, cond_concat_in, timestep) | |
if p is None: | |
continue | |
to_run += [(p, UNCOND)] | |
while len(to_run) > 0: | |
first = to_run[0] | |
first_shape = first[0][0].shape | |
to_batch_temp = [] | |
for x in range(len(to_run)): | |
if can_concat_cond(to_run[x][0], first[0]): | |
to_batch_temp += [x] | |
to_batch_temp.reverse() | |
to_batch = to_batch_temp[:1] | |
for i in range(1, len(to_batch_temp) + 1): | |
batch_amount = to_batch_temp[:len(to_batch_temp) // i] | |
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): | |
to_batch = batch_amount | |
break | |
input_x = [] | |
mult = [] | |
c = [] | |
cond_or_uncond = [] | |
area = [] | |
control = None | |
patches = None | |
for x in to_batch: | |
o = to_run.pop(x) | |
p = o[0] | |
input_x += [p[0]] | |
mult += [p[1]] | |
c += [p[2]] | |
area += [p[3]] | |
cond_or_uncond += [o[1]] | |
control = p[4] | |
patches = p[5] | |
batch_chunks = len(cond_or_uncond) | |
input_x = torch.cat(input_x) | |
c = cond_cat(c) | |
timestep_ = torch.cat([timestep] * batch_chunks) | |
if control is not None: | |
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) | |
transformer_options = {} | |
if 'transformer_options' in model_options: | |
transformer_options = model_options['transformer_options'].copy() | |
if patches is not None: | |
if "patches" in transformer_options: | |
cur_patches = transformer_options["patches"].copy() | |
for p in patches: | |
if p in cur_patches: | |
cur_patches[p] = cur_patches[p] + patches[p] | |
else: | |
cur_patches[p] = patches[p] | |
else: | |
transformer_options["patches"] = patches | |
c['transformer_options'] = transformer_options | |
transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None] | |
if 'model_function_wrapper' in model_options: | |
output = model_options['model_function_wrapper'](model_function, | |
{"input": input_x, "timestep": timestep_, "c": c, | |
"cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) | |
else: | |
output = model_function(input_x, timestep_, **c).chunk(batch_chunks) | |
del input_x | |
model_management.throw_exception_if_processing_interrupted() | |
for o in range(batch_chunks): | |
if cond_or_uncond[o] == COND: | |
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ | |
o] * \ | |
mult[o] | |
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] | |
else: | |
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[ | |
o] * \ | |
mult[o] | |
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \ | |
mult[o] | |
del mult | |
out_cond /= out_count | |
del out_count | |
out_uncond /= out_uncond_count | |
del out_uncond_count | |
return out_cond, out_uncond | |
max_total_area = model_management.maximum_batch_area() | |
if math.isclose(cond_scale, 1.0): | |
uncond = None | |
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, | |
model_options) | |
if "sampler_cfg_function" in model_options: | |
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep} | |
return model_options["sampler_cfg_function"](args) | |
else: | |
return uncond + (cond - uncond) * cond_scale | |
def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
uc_mask = transformer_options['uc_mask'] | |
transformer_options["original_shape"] = list(x.shape) | |
transformer_options["current_index"] = 0 | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x.type(self.dtype) | |
for id, module in enumerate(self.input_blocks): | |
transformer_options["block"] = ("input", id) | |
h = forward_timestep_embed(module, h, emb, context, transformer_options) | |
if control is not None and 'input' in control and len(control['input']) > 0: | |
ctrl = control['input'].pop() | |
if ctrl is not None: | |
h += ctrl | |
hs.append(h) | |
transformer_options["block"] = ("middle", 0) | |
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) | |
if control is not None and 'middle' in control and len(control['middle']) > 0: | |
h += control['middle'].pop() | |
for id, module in enumerate(self.output_blocks): | |
transformer_options["block"] = ("output", id) | |
hsp = hs.pop() | |
if control is not None and 'output' in control and len(control['output']) > 0: | |
ctrl = control['output'].pop() | |
if ctrl is not None: | |
hsp += ctrl | |
h = torch.cat([h, hsp], dim=1) | |
del hsp | |
if len(hs) > 0: | |
output_shape = hs[-1].shape | |
else: | |
output_shape = None | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) | |
h = h.type(x.dtype) | |
x0 = self.out(h) | |
alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone() | |
alpha *= 0.001 * sharpness | |
degraded_x0 = anisotropic.bilateral_blur(x0) * alpha + x0 * (1.0 - alpha) | |
x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask) | |
return x0 | |
def sdxl_encode_adm_patched(self, **kwargs): | |
clip_pooled = kwargs["pooled_output"] | |
width = kwargs.get("width", 768) | |
height = kwargs.get("height", 768) | |
crop_w = kwargs.get("crop_w", 0) | |
crop_h = kwargs.get("crop_h", 0) | |
target_width = kwargs.get("target_width", width) | |
target_height = kwargs.get("target_height", height) | |
if kwargs.get("prompt_type", "") == "negative": | |
width *= 0.8 | |
height *= 0.8 | |
elif kwargs.get("prompt_type", "") == "positive": | |
width *= 1.5 | |
height *= 1.5 | |
out = [] | |
out.append(self.embedder(torch.Tensor([height]))) | |
out.append(self.embedder(torch.Tensor([width]))) | |
out.append(self.embedder(torch.Tensor([crop_h]))) | |
out.append(self.embedder(torch.Tensor([crop_w]))) | |
out.append(self.embedder(torch.Tensor([target_height]))) | |
out.append(self.embedder(torch.Tensor([target_width]))) | |
flat = torch.flatten(torch.cat(out))[None, ] | |
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) | |
def patch_all(): | |
comfy.samplers.sampling_function = sampling_function_patched | |
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched | |
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched | |