Rahatara commited on
Commit
7974756
1 Parent(s): 35497a1

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -127
app.py DELETED
@@ -1,127 +0,0 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- from typing import List, Tuple
4
- import fitz # PyMuPDF
5
- from sentence_transformers import SentenceTransformer, util
6
- import numpy as np
7
- import faiss
8
-
9
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
-
11
- # Placeholder for the app's state
12
- class MyApp:
13
- def __init__(self) -> None:
14
- self.documents = []
15
- self.embeddings = None
16
- self.index = None
17
- self.load_pdf("THEDIA1.pdf")
18
- self.build_vector_db()
19
-
20
- def load_pdf(self, file_path: str) -> None:
21
- """Extracts text from a PDF file and stores it in the app's documents."""
22
- doc = fitz.open(file_path)
23
- self.documents = []
24
- for page_num in range(len(doc)):
25
- page = doc[page_num]
26
- text = page.get_text()
27
- self.documents.append({"page": page_num + 1, "content": text})
28
- print("PDF processed successfully!")
29
-
30
- def build_vector_db(self) -> None:
31
- """Builds a vector database using the content of the PDF."""
32
- model = SentenceTransformer('all-MiniLM-L6-v2')
33
- self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
- self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
35
- self.index.add(np.array(self.embeddings))
36
- print("Vector database built successfully!")
37
-
38
- def search_documents(self, query: str, k: int = 3) -> List[str]:
39
- """Searches for relevant documents using vector similarity."""
40
- model = SentenceTransformer('all-MiniLM-L6-v2')
41
- query_embedding = model.encode([query])
42
- D, I = self.index.search(np.array(query_embedding), k)
43
- results = [self.documents[i]["content"] for i in I[0]]
44
- return results if results else ["No relevant documents found."]
45
-
46
- app = MyApp()
47
-
48
- def respond(
49
- message: str,
50
- history: List[Tuple[str, str]],
51
- system_message: str,
52
- max_tokens: int,
53
- temperature: float,
54
- top_p: float,
55
- ):
56
- system_message = (
57
- "You are a knowledgeable DBT (Dialectical Behavior Therapy) coach. You greet users warmly and ask questions like a real counselor. "
58
- "You are concise, respectful, and a good listener. You use the DBT book to guide users through DBT exercises and provide helpful information. "
59
- "When needed, you ask one follow-up question at a time to guide the user to ask appropriate questions. "
60
- "You avoid giving suggestions if any dangerous act is mentioned by the user and refer them to call someone or emergency services. "
61
- "Your responses are accurate and concise, and you maintain a professional and supportive tone throughout."
62
- )
63
-
64
- messages = [{"role": "system", "content": system_message}]
65
-
66
- for val in history:
67
- if val[0]:
68
- messages.append({"role": "user", "content": val[0]})
69
- if val[1]:
70
- messages.append({"role": "assistant", "content": val[1]})
71
-
72
- messages.append({"role": "user", "content": message})
73
-
74
- # RAG - Retrieve relevant documents
75
- try:
76
- retrieved_docs = app.search_documents(message)
77
- context = "\n".join(retrieved_docs)
78
- messages.append({"role": "system", "content": "Relevant documents: " + context})
79
-
80
- response = ""
81
- response_buffer = []
82
- for message in client.chat_completion(
83
- messages,
84
- max_tokens=max_tokens,
85
- stream=True,
86
- temperature=temperature,
87
- top_p=top_p,
88
- ):
89
- token = message.choices[0].delta.content
90
- response += token
91
- response_buffer.append(token)
92
- if token.endswith('.') or token.endswith('?'):
93
- yield ''.join(response_buffer)
94
- response_buffer = []
95
-
96
- if response_buffer:
97
- yield ''.join(response_buffer)
98
-
99
- except Exception as e:
100
- yield f"An error occurred: {str(e)}"
101
-
102
- demo = gr.Blocks()
103
-
104
- with demo:
105
- gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
106
- gr.Markdown(
107
- "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
108
- "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
109
- )
110
-
111
- chatbot = gr.ChatInterface(
112
- respond,
113
- examples=[
114
- ["I feel overwhelmed with work."],
115
- ["Can you guide me through a quick meditation?"],
116
- ["How do I stop worrying about things I can't control?"],
117
- ["What are some DBT skills for managing anxiety?"],
118
- ["Can you explain mindfulness in DBT?"],
119
- ["I am interested in DBT exercises"],
120
- ["I feel restless. Please help me."],
121
- ["I have destructive thoughts coming to my mind repetitively."]
122
- ],
123
- title='Dialectical Behaviour Therapy Assistant👩‍⚕️'
124
- )
125
-
126
- if __name__ == "__main__":
127
- demo.launch()