File size: 4,786 Bytes
f813718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import replicate
import os
from huggingface_hub import InferenceClient
import random
import openai

# Set API tokens
os.environ["REPLICATE_API_TOKEN"] = "r8_8TlgofGX8rjeBL28vn0VBR93CWOUfvg4NbLS0"
# Initialize the Replicate client
rep_client = replicate.Client()

# Set your OpenAI API key
OPENAI_API_KEY = "sk-proj-5iy4bwrqAW8GpguiEawaT3BlbkFJ8p88lLSjOCeDbxWsAOlr"
openai.api_key = OPENAI_API_KEY
# Initialize the Replicate client
rep_client = replicate.Client()

# Predefined prompts for the dropdown
predefined_prompts = [
    "Missing bolts on railway track",
    "Cracks on railway track",
    "Overgrown vegetation near railway track",
    "Broken railings on railway bridge",
    "Debris on railway track",
    "Damaged railway platform"
]


def ask_rail_defect_question(question, model_name='ft:gpt-3.5-turbo-0125:personal::99NsSAeQ'):
    openai.api_key = OPENAI_API_KEY
    response = openai.ChatCompletion.create(
        model=model_name,
        messages=[
            {
                "role": "system",
                "content": "The assistant is knowledgeable about rail defects and can answer questions related to them.",
            },
            {
                "role": "user",
                "content": question,
            }
        ],
    )
    return response.choices[0].message['content']

# Function to generate variations enhanced by the GPT model
def generate_variations(base_prompt, number_of_variations):
    locations = ["on the left side", "on the right side", "at the top", "at the bottom", "in the center"]
    sizes = ["small", "medium", "large", "tiny", "huge"]
    weather_conditions = ["under cold conditions", "during hot weather", "in dry weather", "in humid conditions", "under varying temperatures"]

    variations = []
    for _ in range(number_of_variations):
        location = random.choice(locations)
        size = random.choice(sizes)
        weather = random.choice(weather_conditions)
        
        # Enhance the base prompt with the GPT model
        enhanced_prompt = ask_rail_defect_question(base_prompt)
        
        full_prompt = f"{enhanced_prompt}, with a {size} defect {location}, observed {weather}."
        variations.append(full_prompt)
    return variations

# Function to generate images from prompts
def generate_images(prompts):
    images = []
    for prompt in prompts:
        try:
            prediction = rep_client.predictions.create(
                version="ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4",
                input={"prompt": prompt, "scheduler": "K_EULER"}
            )
            prediction.wait()
            if prediction.status == "succeeded" and prediction.output:
                images.append(prediction.output[0])
            else:
                images.append("Failed to generate image.")
        except Exception as e:
            images.append(f"Error: {str(e)}")
    return images

def process_railway_defects(prompt, number_of_images):
    variations = generate_variations(prompt, number_of_images)
    images = generate_images(variations)
    return images
    


# UI creation
with gr.Blocks() as app:
    with gr.Tabs("Prompt Input"):
        with gr.Tab("Current Defects"):
            with gr.Row():
                prompt_input = gr.Dropdown(choices=predefined_prompts, label="Select a prompt")
                number_input_dropdown = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
                submit_button_dropdown = gr.Button("Generate")
            image_outputs_dropdown = gr.Gallery()

            def on_submit_click_dropdown(prompt, number_of_images):
                images = process_railway_defects(prompt, number_of_images)
                return images



            submit_button_dropdown.click(
                fn=on_submit_click_dropdown,
                inputs=[prompt_input, number_input_dropdown],
                outputs=image_outputs_dropdown
            )

        with gr.Tab("Custom Defect"):
            with gr.Row():
                custom_prompt_input = gr.Textbox(label="Custom Defect")
                number_input_custom = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
                submit_button_custom = gr.Button("Generate")
            image_outputs_custom = gr.Gallery()

            def on_submit_click_custom(custom_prompt, number_of_images):
              images = process_railway_defects(custom_prompt, number_of_images)
              return images

            submit_button_custom.click(
                fn=on_submit_click_custom,
                inputs=[custom_prompt_input, number_input_custom],
                outputs=image_outputs_custom
            )
        
if __name__ == "__main__":
    app.launch()