Spaces:
Sleeping
Sleeping
Update app.py
#2
by
JairoDanielMT
- opened
app.py
CHANGED
@@ -1,35 +1,32 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
from keras.models import model_from_json
|
3 |
from pydantic import BaseModel
|
4 |
-
from keras.models import Sequential
|
5 |
-
from keras.layers import Dense
|
6 |
import numpy as np
|
7 |
|
8 |
-
# Definición del modelo de datos de entrada
|
9 |
class InputData(BaseModel):
|
10 |
-
data: list
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
# Carga del modelo
|
15 |
def load_model():
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
model = load_model()
|
26 |
|
27 |
@app.post("/predict/")
|
28 |
async def predict(data: InputData):
|
29 |
try:
|
30 |
-
|
31 |
-
input_data = np.array(data.data).reshape(1, -1) # Asumiendo que la entrada debe ser de forma (1, num_features)
|
32 |
prediction = model.predict(input_data).round()
|
33 |
return {"prediction": prediction.tolist()}
|
34 |
except Exception as e:
|
35 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
+
from tensorflow.keras.models import model_from_json
|
3 |
from pydantic import BaseModel
|
|
|
|
|
4 |
import numpy as np
|
5 |
|
|
|
6 |
class InputData(BaseModel):
|
7 |
+
data: list
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
11 |
def load_model():
|
12 |
+
try:
|
13 |
+
with open("model.json", 'r') as json_file:
|
14 |
+
loaded_model_json = json_file.read()
|
15 |
+
loaded_model = model_from_json(loaded_model_json)
|
16 |
+
loaded_model.load_weights("model.h5")
|
17 |
+
loaded_model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy'])
|
18 |
+
return loaded_model
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error cargando el modelo: {str(e)}")
|
21 |
+
raise
|
22 |
|
23 |
model = load_model()
|
24 |
|
25 |
@app.post("/predict/")
|
26 |
async def predict(data: InputData):
|
27 |
try:
|
28 |
+
input_data = np.array(data.data).reshape(1, -1)
|
|
|
29 |
prediction = model.predict(input_data).round()
|
30 |
return {"prediction": prediction.tolist()}
|
31 |
except Exception as e:
|
32 |
+
raise HTTPException(status_code=500, detail=str(e))
|