File size: 10,078 Bytes
9223079
 
 
 
 
 
 
 
 
 
 
358ab8f
9223079
 
358ab8f
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1daa9dc
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b05049
a19d7bd
9223079
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import gradio as gr

from hloc import extract_features
from extra_utils.utils import (
    matcher_zoo,
    device,
    match_dense,
    match_features,
    get_model,
    get_feature_model,
    display_matches,
)


def run_matching(
    match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1
):
    # image0 and image1 is RGB mode
    if image0 is None or image1 is None:
        raise gr.Error("Error: No images found! Please upload two images.")

    model = matcher_zoo[key]
    match_conf = model["config"]
    # update match config
    match_conf["model"]["match_threshold"] = match_threshold
    match_conf["model"]["max_keypoints"] = extract_max_keypoints

    matcher = get_model(match_conf)
    if model["dense"]:
        pred = match_dense.match_images(
            matcher, image0, image1, match_conf["preprocessing"], device=device
        )
        del matcher
        extract_conf = None
    else:
        extract_conf = model["config_feature"]
        # update extract config
        extract_conf["model"]["max_keypoints"] = extract_max_keypoints
        extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
        extractor = get_feature_model(extract_conf)
        pred0 = extract_features.extract(
            extractor, image0, extract_conf["preprocessing"]
        )
        pred1 = extract_features.extract(
            extractor, image1, extract_conf["preprocessing"]
        )
        pred = match_features.match_images(matcher, pred0, pred1)
        del extractor
    fig, num_inliers = display_matches(pred)
    del pred
    return (
        fig,
        {"matches number": num_inliers},
        {"match_conf": match_conf, "extractor_conf": extract_conf},
    )


def ui_change_imagebox(choice):
    return {"value": None, "source": choice, "__type__": "update"}


def ui_reset_state(
    match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1
):
    match_threshold = 0.2
    extract_max_keypoints = 1000
    keypoint_threshold = 0.015
    key = list(matcher_zoo.keys())[0]
    image0 = None
    image1 = None
    return (
        match_threshold,
        extract_max_keypoints,
        keypoint_threshold,
        key,
        image0,
        image1,
        {"value": None, "source": "upload", "__type__": "update"},
        {"value": None, "source": "upload", "__type__": "update"},
        "upload",
        None,
        {},
        {},
    )


def run(config):
    with gr.Blocks(css="footer {visibility: hidden}"
    ) as app:
        gr.Markdown(
            """
            <p align="center">
            <h1 align="center">Image Matching WebUI</h1> 
            </p>
            """
        )

        with gr.Row(equal_height=False):
            with gr.Column():
                with gr.Row():
                    matcher_list = gr.Dropdown(
                        choices=list(matcher_zoo.keys()),
                        value="disk+lightglue",
                        label="Matching Model",
                        interactive=True,
                    )
                    match_image_src = gr.Radio(
                        ["upload", "webcam", "canvas"],
                        label="Image Source",
                        value="upload",
                    )

                with gr.Row():
                    match_setting_threshold = gr.Slider(
                        minimum=0.0,
                        maximum=1,
                        step=0.001,
                        label="Match threshold",
                        value=0.1,
                    )
                    match_setting_max_features = gr.Slider(
                        minimum=10,
                        maximum=10000,
                        step=10,
                        label="Max number of features",
                        value=1000,
                    )
                # TODO: add line settings
                with gr.Row():
                    detect_keypoints_threshold = gr.Slider(
                        minimum=0,
                        maximum=1,
                        step=0.001,
                        label="Keypoint threshold",
                        value=0.015,
                    )
                    detect_line_threshold = gr.Slider(
                        minimum=0.1,
                        maximum=1,
                        step=0.01,
                        label="Line threshold",
                        value=0.2,
                    )
                    # matcher_lists = gr.Radio(
                    #     ["NN-mutual", "Dual-Softmax"],
                    #     label="Matcher mode",
                    #     value="NN-mutual",
                    # )
                with gr.Row():
                    input_image0 = gr.Image(
                        label="Image 0",
                        type="numpy",
                        interactive=True,
                        image_mode="RGB",
                    )
                    input_image1 = gr.Image(
                        label="Image 1",
                        type="numpy",
                        interactive=True,
                        image_mode="RGB",
                    )

                with gr.Row():
                    button_reset = gr.Button(label="Reset", value="Reset")
                    button_run = gr.Button(
                        label="Run Match", value="Run Match", variant="primary"
                    )

                with gr.Accordion("Open for More!", open=False):
                    gr.Markdown(
                        f"""
                        <h3>Supported Algorithms</h3>
                        {", ".join(matcher_zoo.keys())}
                        """
                    )

                # collect inputs
                inputs = [
                    match_setting_threshold,
                    match_setting_max_features,
                    detect_keypoints_threshold,
                    matcher_list,
                    input_image0,
                    input_image1,
                ]

                # Add some examples
                with gr.Row():
                    examples = [
                        [
                            0.1,
                            2000,
                            0.015,
                            "disk+lightglue",
                            "datasets/sacre_coeur/mapping/71295362_4051449754.jpg",
                            "datasets/sacre_coeur/mapping/93341989_396310999.jpg",
                        ],
                        [
                            0.1,
                            2000,
                            0.015,
                            "loftr",
                            "datasets/sacre_coeur/mapping/03903474_1471484089.jpg",
                            "datasets/sacre_coeur/mapping/02928139_3448003521.jpg",
                        ],
                        [
                            0.1,
                            2000,
                            0.015,
                            "disk",
                            "datasets/sacre_coeur/mapping/10265353_3838484249.jpg",
                            "datasets/sacre_coeur/mapping/51091044_3486849416.jpg",
                        ],
                        [
                            0.1,
                            2000,
                            0.015,
                            "topicfm",
                            "datasets/sacre_coeur/mapping/44120379_8371960244.jpg",
                            "datasets/sacre_coeur/mapping/93341989_396310999.jpg",
                        ],
                        [
                            0.1,
                            2000,
                            0.015,
                            "superpoint+superglue",
                            "datasets/sacre_coeur/mapping/17295357_9106075285.jpg",
                            "datasets/sacre_coeur/mapping/44120379_8371960244.jpg",
                        ],
                    ]
                    # Example inputs
                    gr.Examples(
                        examples=examples,
                        inputs=inputs,
                        outputs=[],
                        fn=run_matching,
                        cache_examples=False,
                        label="Examples (click one of the images below to Run Match)",
                    )

            with gr.Column():
                output_mkpts = gr.Image(label="Keypoints Matching", type="numpy")
                matches_result_info = gr.JSON(label="Matches Statistics")
                matcher_info = gr.JSON(label="Match info")

            # callbacks
            match_image_src.change(
                fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image0
            )
            match_image_src.change(
                fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image1
            )

            # collect outputs
            outputs = [
                output_mkpts,
                matches_result_info,
                matcher_info,
            ]
            # button callbacks
            button_run.click(fn=run_matching, inputs=inputs, outputs=outputs)

            # Reset images
            reset_outputs = [
                match_setting_threshold,
                match_setting_max_features,
                detect_keypoints_threshold,
                matcher_list,
                input_image0,
                input_image1,
                input_image0,
                input_image1,
                match_image_src,
                output_mkpts,
                matches_result_info,
                matcher_info,
            ]
            button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs)
    app.queue()
    app.launch(share=False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config_path", type=str, default="config.yaml", help="configuration file path"
    )
    args = parser.parse_args()
    config = None
    run(config)