File size: 6,780 Bytes
8320ccc
4d4dd90
8320ccc
 
 
7dc6568
8320ccc
4d4dd90
 
 
 
7dc6568
4ede021
 
 
 
 
 
7dc6568
4ede021
 
7dc6568
4ede021
 
 
 
 
 
7dc6568
4ede021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4dd90
 
 
 
 
 
4ede021
4d4dd90
 
 
 
 
4ede021
 
 
 
 
4d4dd90
 
4ede021
8811cfe
 
4ede021
8811cfe
4d4dd90
4ede021
4d4dd90
8320ccc
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ede021
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import sys
from pathlib import Path

import torch

from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel

gim_path = Path(__file__).parent / "../../third_party/gim"
sys.path.append(str(gim_path))


def load_model(weight_name, checkpoints_path):
    # load model
    model = None
    detector = None
    if weight_name == "gim_dkm":
        from gim.dkm.models.model_zoo.DKMv3 import DKMv3

        model = DKMv3(weights=None, h=672, w=896)
    elif weight_name == "gim_loftr":
        from gim.loftr.config import get_cfg_defaults
        from gim.loftr.loftr import LoFTR
        from gim.loftr.misc import lower_config

        model = LoFTR(lower_config(get_cfg_defaults())["loftr"])
    elif weight_name == "gim_lightglue":
        from gim.lightglue.models.matchers.lightglue import LightGlue
        from gim.lightglue.superpoint import SuperPoint

        detector = SuperPoint(
            {
                "max_num_keypoints": 2048,
                "force_num_keypoints": True,
                "detection_threshold": 0.0,
                "nms_radius": 3,
                "trainable": False,
            }
        )
        model = LightGlue(
            {
                "filter_threshold": 0.1,
                "flash": False,
                "checkpointed": True,
            }
        )

    # load state dict
    if weight_name == "gim_dkm":
        state_dict = torch.load(checkpoints_path, map_location="cpu")
        if "state_dict" in state_dict.keys():
            state_dict = state_dict["state_dict"]
        for k in list(state_dict.keys()):
            if k.startswith("model."):
                state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
            if "encoder.net.fc" in k:
                state_dict.pop(k)
        model.load_state_dict(state_dict)

    elif weight_name == "gim_loftr":
        state_dict = torch.load(checkpoints_path, map_location="cpu")
        if "state_dict" in state_dict.keys():
            state_dict = state_dict["state_dict"]
        model.load_state_dict(state_dict)

    elif weight_name == "gim_lightglue":
        state_dict = torch.load(checkpoints_path, map_location="cpu")
        if "state_dict" in state_dict.keys():
            state_dict = state_dict["state_dict"]
        for k in list(state_dict.keys()):
            if k.startswith("model."):
                state_dict.pop(k)
            if k.startswith("superpoint."):
                state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k)
        detector.load_state_dict(state_dict)

        state_dict = torch.load(checkpoints_path, map_location="cpu")
        if "state_dict" in state_dict.keys():
            state_dict = state_dict["state_dict"]
        for k in list(state_dict.keys()):
            if k.startswith("superpoint."):
                state_dict.pop(k)
            if k.startswith("model."):
                state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
        model.load_state_dict(state_dict)

    # eval mode
    if detector is not None:
        detector = detector.eval().to(DEVICE)
    model = model.eval().to(DEVICE)
    return model


class GIM(BaseModel):
    default_conf = {
        "match_threshold": 0.2,
        "checkpoint_dir": gim_path / "weights",
        "weights": "gim_dkm",
    }
    required_inputs = [
        "image0",
        "image1",
    ]
    ckpt_name_dict = {
        "gim_dkm": "gim_dkm_100h.ckpt",
        "gim_loftr": "gim_loftr_50h.ckpt",
        "gim_lightglue": "gim_lightglue_100h.ckpt",
    }

    def _init(self, conf):
        ckpt_name = self.ckpt_name_dict[conf["weights"]]
        model_path = self._download_model(
            repo_id=MODEL_REPO_ID,
            filename="{}/{}".format(Path(__file__).stem, ckpt_name),
        )
        self.aspect_ratio = 896 / 672
        model = load_model(conf["weights"], model_path)
        self.net = model
        logger.info("Loaded GIM model")

    def pad_image(self, image, aspect_ratio):
        new_width = max(image.shape[3], int(image.shape[2] * aspect_ratio))
        new_height = max(image.shape[2], int(image.shape[3] / aspect_ratio))
        pad_width = new_width - image.shape[3]
        pad_height = new_height - image.shape[2]
        return torch.nn.functional.pad(
            image,
            (
                pad_width // 2,
                pad_width - pad_width // 2,
                pad_height // 2,
                pad_height - pad_height // 2,
            ),
        )

    def rescale_kpts(self, sparse_matches, shape0, shape1):
        kpts0 = torch.stack(
            (
                shape0[1] * (sparse_matches[:, 0] + 1) / 2,
                shape0[0] * (sparse_matches[:, 1] + 1) / 2,
            ),
            dim=-1,
        )
        kpts1 = torch.stack(
            (
                shape1[1] * (sparse_matches[:, 2] + 1) / 2,
                shape1[0] * (sparse_matches[:, 3] + 1) / 2,
            ),
            dim=-1,
        )
        return kpts0, kpts1

    def compute_mask(self, kpts0, kpts1, orig_shape0, orig_shape1):
        mask = (
            (kpts0[:, 0] > 0)
            & (kpts0[:, 1] > 0)
            & (kpts1[:, 0] > 0)
            & (kpts1[:, 1] > 0)
        )
        mask &= (
            (kpts0[:, 0] <= (orig_shape0[1] - 1))
            & (kpts1[:, 0] <= (orig_shape1[1] - 1))
            & (kpts0[:, 1] <= (orig_shape0[0] - 1))
            & (kpts1[:, 1] <= (orig_shape1[0] - 1))
        )
        return mask

    def _forward(self, data):
        # TODO: only support dkm+gim
        image0, image1 = self.pad_image(
            data["image0"], self.aspect_ratio
        ), self.pad_image(data["image1"], self.aspect_ratio)
        dense_matches, dense_certainty = self.net.match(image0, image1)
        sparse_matches, mconf = self.net.sample(
            dense_matches, dense_certainty, self.conf["max_keypoints"]
        )
        kpts0, kpts1 = self.rescale_kpts(
            sparse_matches, image0.shape[-2:], image1.shape[-2:]
        )
        mask = self.compute_mask(
            kpts0, kpts1, data["image0"].shape[-2:], data["image1"].shape[-2:]
        )
        b_ids, i_ids = torch.where(mconf[None])
        pred = {
            "keypoints0": kpts0[i_ids],
            "keypoints1": kpts1[i_ids],
            "confidence": mconf[i_ids],
            "batch_indexes": b_ids,
        }
        scores, b_ids = pred["confidence"], pred["batch_indexes"]
        kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
        pred["confidence"], pred["batch_indexes"] = scores[mask], b_ids[mask]
        pred["keypoints0"], pred["keypoints1"] = kpts0[mask], kpts1[mask]

        out = {
            "keypoints0": pred["keypoints0"],
            "keypoints1": pred["keypoints1"],
        }
        return out