Realcat
add: GIM (https://github.com/xuelunshen/gim)
4dfb78b
raw
history blame
9.18 kB
import numpy as np
import torch
from kornia.geometry.homography import find_homography_dlt
from ..geometry.epipolar import generalized_epi_dist, relative_pose_error
from ..geometry.gt_generation import IGNORE_FEATURE
from ..geometry.homography import homography_corner_error, sym_homography_error
from ..robust_estimators import load_estimator
from ..utils.tensor import index_batch
from ..utils.tools import AUCMetric
def check_keys_recursive(d, pattern):
if isinstance(pattern, dict):
{check_keys_recursive(d[k], v) for k, v in pattern.items()}
else:
for k in pattern:
assert k in d.keys()
def get_matches_scores(kpts0, kpts1, matches0, mscores0):
m0 = matches0 > -1
m1 = matches0[m0]
pts0 = kpts0[m0]
pts1 = kpts1[m1]
scores = mscores0[m0]
return pts0, pts1, scores
def eval_per_batch_item(data: dict, pred: dict, eval_f, *args, **kwargs):
# Batched data
results = [
eval_f(data_i, pred_i, *args, **kwargs)
for data_i, pred_i in zip(index_batch(data), index_batch(pred))
]
# Return a dictionary of lists with the evaluation of each item
return {k: [r[k] for r in results] for k in results[0].keys()}
def eval_matches_epipolar(data: dict, pred: dict) -> dict:
check_keys_recursive(data, ["view0", "view1", "T_0to1"])
check_keys_recursive(
pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0, scores0 = pred["matches0"], pred["matching_scores0"]
pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
results = {}
# match metrics
n_epi_err = generalized_epi_dist(
pts0[None],
pts1[None],
data["view0"]["camera"],
data["view1"]["camera"],
data["T_0to1"],
False,
essential=True,
)[0]
results["epi_prec@1e-4"] = (n_epi_err < 1e-4).float().mean()
results["epi_prec@5e-4"] = (n_epi_err < 5e-4).float().mean()
results["epi_prec@1e-3"] = (n_epi_err < 1e-3).float().mean()
results["num_matches"] = pts0.shape[0]
results["num_keypoints"] = (kp0.shape[0] + kp1.shape[0]) / 2.0
return results
def eval_matches_homography(data: dict, pred: dict) -> dict:
check_keys_recursive(data, ["H_0to1"])
check_keys_recursive(
pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
)
H_gt = data["H_0to1"]
if H_gt.ndim > 2:
return eval_per_batch_item(data, pred, eval_matches_homography)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0, scores0 = pred["matches0"], pred["matching_scores0"]
pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
err = sym_homography_error(pts0, pts1, H_gt)
results = {}
results["prec@1px"] = (err < 1).float().mean().nan_to_num().item()
results["prec@3px"] = (err < 3).float().mean().nan_to_num().item()
results["num_matches"] = pts0.shape[0]
results["num_keypoints"] = (kp0.shape[0] + kp1.shape[0]) / 2.0
return results
def eval_relative_pose_robust(data, pred, conf):
check_keys_recursive(data, ["view0", "view1", "T_0to1"])
check_keys_recursive(
pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
)
T_gt = data["T_0to1"]
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0, scores0 = pred["matches0"], pred["matching_scores0"]
pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
results = {}
estimator = load_estimator("relative_pose", conf["estimator"])(conf)
data_ = {
"m_kpts0": pts0,
"m_kpts1": pts1,
"camera0": data["view0"]["camera"][0],
"camera1": data["view1"]["camera"][0],
}
est = estimator(data_)
if not est["success"]:
results["rel_pose_error"] = float("inf")
results["ransac_inl"] = 0
results["ransac_inl%"] = 0
else:
# R, t, inl = ret
M = est["M_0to1"]
inl = est["inliers"].numpy()
t_error, r_error = relative_pose_error(T_gt, M.R, M.t)
results["rel_pose_error"] = max(r_error, t_error)
results["ransac_inl"] = np.sum(inl)
results["ransac_inl%"] = np.mean(inl)
return results
def eval_homography_robust(data, pred, conf):
H_gt = data["H_0to1"]
if H_gt.ndim > 2:
return eval_per_batch_item(data, pred, eval_relative_pose_robust, conf)
estimator = load_estimator("homography", conf["estimator"])(conf)
data_ = {}
if "keypoints0" in pred:
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0, scores0 = pred["matches0"], pred["matching_scores0"]
pts0, pts1, _ = get_matches_scores(kp0, kp1, m0, scores0)
data_["m_kpts0"] = pts0
data_["m_kpts1"] = pts1
if "lines0" in pred:
if "orig_lines0" in pred:
lines0 = pred["orig_lines0"]
lines1 = pred["orig_lines1"]
else:
lines0 = pred["lines0"]
lines1 = pred["lines1"]
m_lines0, m_lines1, _ = get_matches_scores(
lines0, lines1, pred["line_matches0"], pred["line_matching_scores0"]
)
data_["m_lines0"] = m_lines0
data_["m_lines1"] = m_lines1
est = estimator(data_)
if est["success"]:
M = est["M_0to1"]
error_r = homography_corner_error(M, H_gt, data["view0"]["image_size"]).item()
else:
error_r = float("inf")
results = {}
results["H_error_ransac"] = error_r
if "inliers" in est:
inl = est["inliers"]
results["ransac_inl"] = inl.float().sum().item()
results["ransac_inl%"] = inl.float().sum().item() / max(len(inl), 1)
return results
def eval_homography_dlt(data, pred):
H_gt = data["H_0to1"]
H_inf = torch.ones_like(H_gt) * float("inf")
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0, scores0 = pred["matches0"], pred["matching_scores0"]
pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
scores = scores.to(pts0)
results = {}
try:
if H_gt.ndim == 2:
pts0, pts1, scores = pts0[None], pts1[None], scores[None]
h_dlt = find_homography_dlt(pts0, pts1, scores)
if H_gt.ndim == 2:
h_dlt = h_dlt[0]
except AssertionError:
h_dlt = H_inf
error_dlt = homography_corner_error(h_dlt, H_gt, data["view0"]["image_size"])
results["H_error_dlt"] = error_dlt.item()
return results
def eval_poses(pose_results, auc_ths, key, unit="°"):
pose_aucs = {}
best_th = -1
for th, results_i in pose_results.items():
pose_aucs[th] = AUCMetric(auc_ths, results_i[key]).compute()
mAAs = {k: np.mean(v) for k, v in pose_aucs.items()}
best_th = max(mAAs, key=mAAs.get)
if len(pose_aucs) > -1:
print("Tested ransac setup with following results:")
print("AUC", pose_aucs)
print("mAA", mAAs)
print("best threshold =", best_th)
summaries = {}
for i, ath in enumerate(auc_ths):
summaries[f"{key}@{ath}{unit}"] = pose_aucs[best_th][i]
summaries[f"{key}_mAA"] = mAAs[best_th]
for k, v in pose_results[best_th].items():
arr = np.array(v)
if not np.issubdtype(np.array(v).dtype, np.number):
continue
summaries[f"m{k}"] = round(np.median(arr), 3)
return summaries, best_th
def get_tp_fp_pts(pred_matches, gt_matches, pred_scores):
"""
Computes the True Positives (TP), False positives (FP), the score associated
to each match and the number of positives for a set of matches.
"""
assert pred_matches.shape == pred_scores.shape
ignore_mask = gt_matches != IGNORE_FEATURE
pred_matches, gt_matches, pred_scores = (
pred_matches[ignore_mask],
gt_matches[ignore_mask],
pred_scores[ignore_mask],
)
num_pos = np.sum(gt_matches != -1)
pred_positives = pred_matches != -1
tp = pred_matches[pred_positives] == gt_matches[pred_positives]
fp = pred_matches[pred_positives] != gt_matches[pred_positives]
scores = pred_scores[pred_positives]
return tp, fp, scores, num_pos
def AP(tp, fp):
recall = tp
precision = tp / np.maximum(tp + fp, 1e-9)
recall = np.concatenate(([0.0], recall, [1.0]))
precision = np.concatenate(([0.0], precision, [0.0]))
for i in range(precision.size - 1, 0, -1):
precision[i - 1] = max(precision[i - 1], precision[i])
i = np.where(recall[1:] != recall[:-1])[0]
ap = np.sum((recall[i + 1] - recall[i]) * precision[i + 1])
return ap
def aggregate_pr_results(results, suffix=""):
tp_list = np.concatenate(results["tp" + suffix], axis=0)
fp_list = np.concatenate(results["fp" + suffix], axis=0)
scores_list = np.concatenate(results["scores" + suffix], axis=0)
n_gt = max(results["num_pos" + suffix], 1)
out = {}
idx = np.argsort(scores_list)[::-1]
tp_vals = np.cumsum(tp_list[idx]) / n_gt
fp_vals = np.cumsum(fp_list[idx]) / n_gt
out["curve_recall" + suffix] = tp_vals
out["curve_precision" + suffix] = tp_vals / np.maximum(tp_vals + fp_vals, 1e-9)
out["AP" + suffix] = AP(tp_vals, fp_vals) * 100
return out