Spaces:
Running
Running
""" | |
This file implements the training process and all the summaries | |
""" | |
import os | |
import numpy as np | |
import cv2 | |
import torch | |
from torch.nn.functional import pixel_shuffle, softmax | |
from torch.utils.data import DataLoader | |
import torch.utils.data.dataloader as torch_loader | |
from tensorboardX import SummaryWriter | |
from .dataset.dataset_util import get_dataset | |
from .model.model_util import get_model | |
from .model.loss import TotalLoss, get_loss_and_weights | |
from .model.metrics import AverageMeter, Metrics, super_nms | |
from .model.lr_scheduler import get_lr_scheduler | |
from .misc.train_utils import (convert_image, get_latest_checkpoint, | |
remove_old_checkpoints) | |
def customized_collate_fn(batch): | |
""" Customized collate_fn. """ | |
batch_keys = ["image", "junction_map", "heatmap", "valid_mask"] | |
list_keys = ["junctions", "line_map"] | |
outputs = {} | |
for key in batch_keys: | |
outputs[key] = torch_loader.default_collate([b[key] for b in batch]) | |
for key in list_keys: | |
outputs[key] = [b[key] for b in batch] | |
return outputs | |
def restore_weights(model, state_dict, strict=True): | |
""" Restore weights in compatible mode. """ | |
# Try to directly load state dict | |
try: | |
model.load_state_dict(state_dict, strict=strict) | |
# Deal with some version compatibility issue (catch version incompatible) | |
except: | |
err = model.load_state_dict(state_dict, strict=False) | |
# missing keys are those in model but not in state_dict | |
missing_keys = err.missing_keys | |
# Unexpected keys are those in state_dict but not in model | |
unexpected_keys = err.unexpected_keys | |
# Load mismatched keys manually | |
model_dict = model.state_dict() | |
for idx, key in enumerate(missing_keys): | |
dict_keys = [_ for _ in unexpected_keys if not "tracked" in _] | |
model_dict[key] = state_dict[dict_keys[idx]] | |
model.load_state_dict(model_dict) | |
return model | |
def train_net(args, dataset_cfg, model_cfg, output_path): | |
""" Main training function. """ | |
# Add some version compatibility check | |
if model_cfg.get("weighting_policy") is None: | |
# Default to static | |
model_cfg["weighting_policy"] = "static" | |
# Get the train, val, test config | |
train_cfg = model_cfg["train"] | |
test_cfg = model_cfg["test"] | |
# Create train and test dataset | |
print("\t Initializing dataset...") | |
train_dataset, train_collate_fn = get_dataset("train", dataset_cfg) | |
test_dataset, test_collate_fn = get_dataset("test", dataset_cfg) | |
# Create the dataloader | |
train_loader = DataLoader(train_dataset, | |
batch_size=train_cfg["batch_size"], | |
num_workers=8, | |
shuffle=True, pin_memory=True, | |
collate_fn=train_collate_fn) | |
test_loader = DataLoader(test_dataset, | |
batch_size=test_cfg.get("batch_size", 1), | |
num_workers=test_cfg.get("num_workers", 1), | |
shuffle=False, pin_memory=False, | |
collate_fn=test_collate_fn) | |
print("\t Successfully intialized dataloaders.") | |
# Get the loss function and weight first | |
loss_funcs, loss_weights = get_loss_and_weights(model_cfg) | |
# If resume. | |
if args.resume: | |
# Create model and load the state dict | |
checkpoint = get_latest_checkpoint(args.resume_path, | |
args.checkpoint_name) | |
model = get_model(model_cfg, loss_weights) | |
model = restore_weights(model, checkpoint["model_state_dict"]) | |
model = model.cuda() | |
optimizer = torch.optim.Adam( | |
[{"params": model.parameters(), | |
"initial_lr": model_cfg["learning_rate"]}], | |
model_cfg["learning_rate"], | |
amsgrad=True) | |
optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) | |
# Optionally get the learning rate scheduler | |
scheduler = get_lr_scheduler( | |
lr_decay=model_cfg.get("lr_decay", False), | |
lr_decay_cfg=model_cfg.get("lr_decay_cfg", None), | |
optimizer=optimizer) | |
# If we start to use learning rate scheduler from the middle | |
if ((scheduler is not None) | |
and (checkpoint.get("scheduler_state_dict", None) is not None)): | |
scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
start_epoch = checkpoint["epoch"] + 1 | |
# Initialize all the components. | |
else: | |
# Create model and optimizer | |
model = get_model(model_cfg, loss_weights) | |
# Optionally get the pretrained wieghts | |
if args.pretrained: | |
print("\t [Debug] Loading pretrained weights...") | |
checkpoint = get_latest_checkpoint(args.pretrained_path, | |
args.checkpoint_name) | |
# If auto weighting restore from non-auto weighting | |
model = restore_weights(model, checkpoint["model_state_dict"], | |
strict=False) | |
print("\t [Debug] Finished loading pretrained weights!") | |
model = model.cuda() | |
optimizer = torch.optim.Adam( | |
[{"params": model.parameters(), | |
"initial_lr": model_cfg["learning_rate"]}], | |
model_cfg["learning_rate"], | |
amsgrad=True) | |
# Optionally get the learning rate scheduler | |
scheduler = get_lr_scheduler( | |
lr_decay=model_cfg.get("lr_decay", False), | |
lr_decay_cfg=model_cfg.get("lr_decay_cfg", None), | |
optimizer=optimizer) | |
start_epoch = 0 | |
print("\t Successfully initialized model") | |
# Define the total loss | |
policy = model_cfg.get("weighting_policy", "static") | |
loss_func = TotalLoss(loss_funcs, loss_weights, policy).cuda() | |
if "descriptor_decoder" in model_cfg: | |
metric_func = Metrics(model_cfg["detection_thresh"], | |
model_cfg["prob_thresh"], | |
model_cfg["descriptor_loss_cfg"]["grid_size"], | |
desc_metric_lst='all') | |
else: | |
metric_func = Metrics(model_cfg["detection_thresh"], | |
model_cfg["prob_thresh"], | |
model_cfg["grid_size"]) | |
# Define the summary writer | |
logdir = os.path.join(output_path, "log") | |
writer = SummaryWriter(logdir=logdir) | |
# Start the training loop | |
for epoch in range(start_epoch, model_cfg["epochs"]): | |
# Record the learning rate | |
current_lr = optimizer.state_dict()["param_groups"][0]["lr"] | |
writer.add_scalar("LR/lr", current_lr, epoch) | |
# Train for one epochs | |
print("\n\n================== Training ====================") | |
train_single_epoch( | |
model=model, | |
model_cfg=model_cfg, | |
optimizer=optimizer, | |
loss_func=loss_func, | |
metric_func=metric_func, | |
train_loader=train_loader, | |
writer=writer, | |
epoch=epoch) | |
# Do the validation | |
print("\n\n================== Validation ==================") | |
validate( | |
model=model, | |
model_cfg=model_cfg, | |
loss_func=loss_func, | |
metric_func=metric_func, | |
val_loader=test_loader, | |
writer=writer, | |
epoch=epoch) | |
# Update the scheduler | |
if scheduler is not None: | |
scheduler.step() | |
# Save checkpoints | |
file_name = os.path.join(output_path, | |
"checkpoint-epoch%03d-end.tar"%(epoch)) | |
print("[Info] Saving checkpoint %s ..." % file_name) | |
save_dict = { | |
"epoch": epoch, | |
"model_state_dict": model.state_dict(), | |
"optimizer_state_dict": optimizer.state_dict(), | |
"model_cfg": model_cfg} | |
if scheduler is not None: | |
save_dict.update({"scheduler_state_dict": scheduler.state_dict()}) | |
torch.save(save_dict, file_name) | |
# Remove the outdated checkpoints | |
remove_old_checkpoints(output_path, model_cfg.get("max_ckpt", 15)) | |
def train_single_epoch(model, model_cfg, optimizer, loss_func, metric_func, | |
train_loader, writer, epoch): | |
""" Train for one epoch. """ | |
# Switch the model to training mode | |
model.train() | |
# Initialize the average meter | |
compute_descriptors = loss_func.compute_descriptors | |
if compute_descriptors: | |
average_meter = AverageMeter(is_training=True, desc_metric_lst='all') | |
else: | |
average_meter = AverageMeter(is_training=True) | |
# The training loop | |
for idx, data in enumerate(train_loader): | |
if compute_descriptors: | |
junc_map = data["ref_junction_map"].cuda() | |
junc_map2 = data["target_junction_map"].cuda() | |
heatmap = data["ref_heatmap"].cuda() | |
heatmap2 = data["target_heatmap"].cuda() | |
line_points = data["ref_line_points"].cuda() | |
line_points2 = data["target_line_points"].cuda() | |
line_indices = data["ref_line_indices"].cuda() | |
valid_mask = data["ref_valid_mask"].cuda() | |
valid_mask2 = data["target_valid_mask"].cuda() | |
input_images = data["ref_image"].cuda() | |
input_images2 = data["target_image"].cuda() | |
# Run the forward pass | |
outputs = model(input_images) | |
outputs2 = model(input_images2) | |
# Compute losses | |
losses = loss_func.forward_descriptors( | |
outputs["junctions"], outputs2["junctions"], | |
junc_map, junc_map2, outputs["heatmap"], outputs2["heatmap"], | |
heatmap, heatmap2, line_points, line_points2, | |
line_indices, outputs['descriptors'], outputs2['descriptors'], | |
epoch, valid_mask, valid_mask2) | |
else: | |
junc_map = data["junction_map"].cuda() | |
heatmap = data["heatmap"].cuda() | |
valid_mask = data["valid_mask"].cuda() | |
input_images = data["image"].cuda() | |
# Run the forward pass | |
outputs = model(input_images) | |
# Compute losses | |
losses = loss_func( | |
outputs["junctions"], junc_map, | |
outputs["heatmap"], heatmap, | |
valid_mask) | |
total_loss = losses["total_loss"] | |
# Update the model | |
optimizer.zero_grad() | |
total_loss.backward() | |
optimizer.step() | |
# Compute the global step | |
global_step = epoch * len(train_loader) + idx | |
############## Measure the metric error ######################### | |
# Only do this when needed | |
if (((idx % model_cfg["disp_freq"]) == 0) | |
or ((idx % model_cfg["summary_freq"]) == 0)): | |
junc_np = convert_junc_predictions( | |
outputs["junctions"], model_cfg["grid_size"], | |
model_cfg["detection_thresh"], 300) | |
junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1) | |
# Always fetch only one channel (compatible with L1, L2, and CE) | |
if outputs["heatmap"].shape[1] == 2: | |
heatmap_np = softmax(outputs["heatmap"].detach(), | |
dim=1).cpu().numpy() | |
heatmap_np = heatmap_np.transpose(0, 2, 3, 1)[:, :, :, 1:] | |
else: | |
heatmap_np = torch.sigmoid(outputs["heatmap"].detach()) | |
heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1) | |
heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1) | |
valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1) | |
# Evaluate metric results | |
if compute_descriptors: | |
metric_func.evaluate( | |
junc_np["junc_pred"], junc_np["junc_pred_nms"], | |
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np, | |
line_points, line_points2, outputs["descriptors"], | |
outputs2["descriptors"], line_indices) | |
else: | |
metric_func.evaluate( | |
junc_np["junc_pred"], junc_np["junc_pred_nms"], | |
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np) | |
# Update average meter | |
junc_loss = losses["junc_loss"].item() | |
heatmap_loss = losses["heatmap_loss"].item() | |
loss_dict = { | |
"junc_loss": junc_loss, | |
"heatmap_loss": heatmap_loss, | |
"total_loss": total_loss.item()} | |
if compute_descriptors: | |
descriptor_loss = losses["descriptor_loss"].item() | |
loss_dict["descriptor_loss"] = losses["descriptor_loss"].item() | |
average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0]) | |
# Display the progress | |
if (idx % model_cfg["disp_freq"]) == 0: | |
results = metric_func.metric_results | |
average = average_meter.average() | |
# Get gpu memory usage in GB | |
gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3) | |
if compute_descriptors: | |
print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f), gpu_mem=%.4fGB" | |
% (epoch, model_cfg["epochs"], idx, len(train_loader), | |
total_loss.item(), average["total_loss"], junc_loss, | |
average["junc_loss"], heatmap_loss, | |
average["heatmap_loss"], descriptor_loss, | |
average["descriptor_loss"], gpu_mem_usage)) | |
else: | |
print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), gpu_mem=%.4fGB" | |
% (epoch, model_cfg["epochs"], idx, len(train_loader), | |
total_loss.item(), average["total_loss"], | |
junc_loss, average["junc_loss"], heatmap_loss, | |
average["heatmap_loss"], gpu_mem_usage)) | |
print("\t Junction precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
% (results["junc_precision"], average["junc_precision"], | |
results["junc_recall"], average["junc_recall"])) | |
print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
% (results["junc_precision_nms"], | |
average["junc_precision_nms"], | |
results["junc_recall_nms"], average["junc_recall_nms"])) | |
print("\t Heatmap precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
%(results["heatmap_precision"], | |
average["heatmap_precision"], | |
results["heatmap_recall"], average["heatmap_recall"])) | |
if compute_descriptors: | |
print("\t Descriptors matching score=%.4f (%.4f)" | |
%(results["matching_score"], average["matching_score"])) | |
# Record summaries | |
if (idx % model_cfg["summary_freq"]) == 0: | |
results = metric_func.metric_results | |
average = average_meter.average() | |
# Add the shared losses | |
scalar_summaries = { | |
"junc_loss": junc_loss, | |
"heatmap_loss": heatmap_loss, | |
"total_loss": total_loss.detach().cpu().numpy(), | |
"metrics": results, | |
"average": average} | |
# Add descriptor terms | |
if compute_descriptors: | |
scalar_summaries["descriptor_loss"] = descriptor_loss | |
scalar_summaries["w_desc"] = losses["w_desc"] | |
# Add weighting terms (even for static terms) | |
scalar_summaries["w_junc"] = losses["w_junc"] | |
scalar_summaries["w_heatmap"] = losses["w_heatmap"] | |
scalar_summaries["reg_loss"] = losses["reg_loss"].item() | |
num_images = 3 | |
junc_pred_binary = (junc_np["junc_pred"][:num_images, ...] | |
> model_cfg["detection_thresh"]) | |
junc_pred_nms_binary = (junc_np["junc_pred_nms"][:num_images, ...] | |
> model_cfg["detection_thresh"]) | |
image_summaries = { | |
"image": input_images.cpu().numpy()[:num_images, ...], | |
"valid_mask": valid_mask_np[:num_images, ...], | |
"junc_map_pred": junc_pred_binary, | |
"junc_map_pred_nms": junc_pred_nms_binary, | |
"junc_map_gt": junc_map_np[:num_images, ...], | |
"junc_prob_map": junc_np["junc_prob"][:num_images, ...], | |
"heatmap_pred": heatmap_np[:num_images, ...], | |
"heatmap_gt": heatmap_gt_np[:num_images, ...]} | |
# Record the training summary | |
record_train_summaries( | |
writer, global_step, scalars=scalar_summaries, | |
images=image_summaries) | |
def validate(model, model_cfg, loss_func, metric_func, val_loader, writer, epoch): | |
""" Validation. """ | |
# Switch the model to eval mode | |
model.eval() | |
# Initialize the average meter | |
compute_descriptors = loss_func.compute_descriptors | |
if compute_descriptors: | |
average_meter = AverageMeter(is_training=True, desc_metric_lst='all') | |
else: | |
average_meter = AverageMeter(is_training=True) | |
# The validation loop | |
for idx, data in enumerate(val_loader): | |
if compute_descriptors: | |
junc_map = data["ref_junction_map"].cuda() | |
junc_map2 = data["target_junction_map"].cuda() | |
heatmap = data["ref_heatmap"].cuda() | |
heatmap2 = data["target_heatmap"].cuda() | |
line_points = data["ref_line_points"].cuda() | |
line_points2 = data["target_line_points"].cuda() | |
line_indices = data["ref_line_indices"].cuda() | |
valid_mask = data["ref_valid_mask"].cuda() | |
valid_mask2 = data["target_valid_mask"].cuda() | |
input_images = data["ref_image"].cuda() | |
input_images2 = data["target_image"].cuda() | |
# Run the forward pass | |
with torch.no_grad(): | |
outputs = model(input_images) | |
outputs2 = model(input_images2) | |
# Compute losses | |
losses = loss_func.forward_descriptors( | |
outputs["junctions"], outputs2["junctions"], | |
junc_map, junc_map2, outputs["heatmap"], | |
outputs2["heatmap"], heatmap, heatmap2, line_points, | |
line_points2, line_indices, outputs['descriptors'], | |
outputs2['descriptors'], epoch, valid_mask, valid_mask2) | |
else: | |
junc_map = data["junction_map"].cuda() | |
heatmap = data["heatmap"].cuda() | |
valid_mask = data["valid_mask"].cuda() | |
input_images = data["image"].cuda() | |
# Run the forward pass | |
with torch.no_grad(): | |
outputs = model(input_images) | |
# Compute losses | |
losses = loss_func( | |
outputs["junctions"], junc_map, | |
outputs["heatmap"], heatmap, | |
valid_mask) | |
total_loss = losses["total_loss"] | |
############## Measure the metric error ######################### | |
junc_np = convert_junc_predictions( | |
outputs["junctions"], model_cfg["grid_size"], | |
model_cfg["detection_thresh"], 300) | |
junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1) | |
# Always fetch only one channel (compatible with L1, L2, and CE) | |
if outputs["heatmap"].shape[1] == 2: | |
heatmap_np = softmax(outputs["heatmap"].detach(), | |
dim=1).cpu().numpy().transpose(0, 2, 3, 1) | |
heatmap_np = heatmap_np[:, :, :, 1:] | |
else: | |
heatmap_np = torch.sigmoid(outputs["heatmap"].detach()) | |
heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1) | |
heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1) | |
valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1) | |
# Evaluate metric results | |
if compute_descriptors: | |
metric_func.evaluate( | |
junc_np["junc_pred"], junc_np["junc_pred_nms"], | |
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np, | |
line_points, line_points2, outputs["descriptors"], | |
outputs2["descriptors"], line_indices) | |
else: | |
metric_func.evaluate( | |
junc_np["junc_pred"], junc_np["junc_pred_nms"], junc_map_np, | |
heatmap_np, heatmap_gt_np, valid_mask_np) | |
# Update average meter | |
junc_loss = losses["junc_loss"].item() | |
heatmap_loss = losses["heatmap_loss"].item() | |
loss_dict = { | |
"junc_loss": junc_loss, | |
"heatmap_loss": heatmap_loss, | |
"total_loss": total_loss.item()} | |
if compute_descriptors: | |
descriptor_loss = losses["descriptor_loss"].item() | |
loss_dict["descriptor_loss"] = losses["descriptor_loss"].item() | |
average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0]) | |
# Display the progress | |
if (idx % model_cfg["disp_freq"]) == 0: | |
results = metric_func.metric_results | |
average = average_meter.average() | |
if compute_descriptors: | |
print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f)" | |
% (idx, len(val_loader), | |
total_loss.item(), average["total_loss"], | |
junc_loss, average["junc_loss"], | |
heatmap_loss, average["heatmap_loss"], | |
descriptor_loss, average["descriptor_loss"])) | |
else: | |
print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f)" | |
% (idx, len(val_loader), | |
total_loss.item(), average["total_loss"], | |
junc_loss, average["junc_loss"], | |
heatmap_loss, average["heatmap_loss"])) | |
print("\t Junction precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
% (results["junc_precision"], average["junc_precision"], | |
results["junc_recall"], average["junc_recall"])) | |
print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
% (results["junc_precision_nms"], | |
average["junc_precision_nms"], | |
results["junc_recall_nms"], average["junc_recall_nms"])) | |
print("\t Heatmap precision=%.4f (%.4f) / recall=%.4f (%.4f)" | |
% (results["heatmap_precision"], | |
average["heatmap_precision"], | |
results["heatmap_recall"], average["heatmap_recall"])) | |
if compute_descriptors: | |
print("\t Descriptors matching score=%.4f (%.4f)" | |
%(results["matching_score"], average["matching_score"])) | |
# Record summaries | |
average = average_meter.average() | |
scalar_summaries = {"average": average} | |
# Record the training summary | |
record_test_summaries(writer, epoch, scalar_summaries) | |
def convert_junc_predictions(predictions, grid_size, | |
detect_thresh=1/65, topk=300): | |
""" Convert torch predictions to numpy arrays for evaluation. """ | |
# Convert to probability outputs first | |
junc_prob = softmax(predictions.detach(), dim=1).cpu() | |
junc_pred = junc_prob[:, :-1, :, :] | |
junc_prob_np = junc_prob.numpy().transpose(0, 2, 3, 1)[:, :, :, :-1] | |
junc_prob_np = np.sum(junc_prob_np, axis=-1) | |
junc_pred_np = pixel_shuffle( | |
junc_pred, grid_size).cpu().numpy().transpose(0, 2, 3, 1) | |
junc_pred_np_nms = super_nms(junc_pred_np, grid_size, detect_thresh, topk) | |
junc_pred_np = junc_pred_np.squeeze(-1) | |
return {"junc_pred": junc_pred_np, "junc_pred_nms": junc_pred_np_nms, | |
"junc_prob": junc_prob_np} | |
def record_train_summaries(writer, global_step, scalars, images): | |
""" Record training summaries. """ | |
# Record the scalar summaries | |
results = scalars["metrics"] | |
average = scalars["average"] | |
# GPU memory part | |
# Get gpu memory usage in GB | |
gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3) | |
writer.add_scalar("GPU/GPU_memory_usage", gpu_mem_usage, global_step) | |
# Loss part | |
writer.add_scalar("Train_loss/junc_loss", scalars["junc_loss"], | |
global_step) | |
writer.add_scalar("Train_loss/heatmap_loss", scalars["heatmap_loss"], | |
global_step) | |
writer.add_scalar("Train_loss/total_loss", scalars["total_loss"], | |
global_step) | |
# Add regularization loss | |
if "reg_loss" in scalars.keys(): | |
writer.add_scalar("Train_loss/reg_loss", scalars["reg_loss"], | |
global_step) | |
# Add descriptor loss | |
if "descriptor_loss" in scalars.keys(): | |
key = "descriptor_loss" | |
writer.add_scalar("Train_loss/%s"%(key), scalars[key], global_step) | |
writer.add_scalar("Train_loss_average/%s"%(key), average[key], | |
global_step) | |
# Record weighting | |
for key in scalars.keys(): | |
if "w_" in key: | |
writer.add_scalar("Train_weight/%s"%(key), scalars[key], | |
global_step) | |
# Smoothed loss | |
writer.add_scalar("Train_loss_average/junc_loss", average["junc_loss"], | |
global_step) | |
writer.add_scalar("Train_loss_average/heatmap_loss", | |
average["heatmap_loss"], global_step) | |
writer.add_scalar("Train_loss_average/total_loss", average["total_loss"], | |
global_step) | |
# Add smoothed descriptor loss | |
if "descriptor_loss" in average.keys(): | |
writer.add_scalar("Train_loss_average/descriptor_loss", | |
average["descriptor_loss"], global_step) | |
# Metrics part | |
writer.add_scalar("Train_metrics/junc_precision", | |
results["junc_precision"], global_step) | |
writer.add_scalar("Train_metrics/junc_precision_nms", | |
results["junc_precision_nms"], global_step) | |
writer.add_scalar("Train_metrics/junc_recall", | |
results["junc_recall"], global_step) | |
writer.add_scalar("Train_metrics/junc_recall_nms", | |
results["junc_recall_nms"], global_step) | |
writer.add_scalar("Train_metrics/heatmap_precision", | |
results["heatmap_precision"], global_step) | |
writer.add_scalar("Train_metrics/heatmap_recall", | |
results["heatmap_recall"], global_step) | |
# Add descriptor metric | |
if "matching_score" in results.keys(): | |
writer.add_scalar("Train_metrics/matching_score", | |
results["matching_score"], global_step) | |
# Average part | |
writer.add_scalar("Train_metrics_average/junc_precision", | |
average["junc_precision"], global_step) | |
writer.add_scalar("Train_metrics_average/junc_precision_nms", | |
average["junc_precision_nms"], global_step) | |
writer.add_scalar("Train_metrics_average/junc_recall", | |
average["junc_recall"], global_step) | |
writer.add_scalar("Train_metrics_average/junc_recall_nms", | |
average["junc_recall_nms"], global_step) | |
writer.add_scalar("Train_metrics_average/heatmap_precision", | |
average["heatmap_precision"], global_step) | |
writer.add_scalar("Train_metrics_average/heatmap_recall", | |
average["heatmap_recall"], global_step) | |
# Add smoothed descriptor metric | |
if "matching_score" in average.keys(): | |
writer.add_scalar("Train_metrics_average/matching_score", | |
average["matching_score"], global_step) | |
# Record the image summary | |
# Image part | |
image_tensor = convert_image(images["image"], 1) | |
valid_masks = convert_image(images["valid_mask"], -1) | |
writer.add_images("Train/images", image_tensor, global_step, | |
dataformats="NCHW") | |
writer.add_images("Train/valid_map", valid_masks, global_step, | |
dataformats="NHWC") | |
# Heatmap part | |
writer.add_images("Train/heatmap_gt", | |
convert_image(images["heatmap_gt"], -1), global_step, | |
dataformats="NHWC") | |
writer.add_images("Train/heatmap_pred", | |
convert_image(images["heatmap_pred"], -1), global_step, | |
dataformats="NHWC") | |
# Junction prediction part | |
junc_plots = plot_junction_detection( | |
image_tensor, images["junc_map_pred"], | |
images["junc_map_pred_nms"], images["junc_map_gt"]) | |
writer.add_images("Train/junc_gt", junc_plots["junc_gt_plot"] / 255., | |
global_step, dataformats="NHWC") | |
writer.add_images("Train/junc_pred", junc_plots["junc_pred_plot"] / 255., | |
global_step, dataformats="NHWC") | |
writer.add_images("Train/junc_pred_nms", | |
junc_plots["junc_pred_nms_plot"] / 255., global_step, | |
dataformats="NHWC") | |
writer.add_images( | |
"Train/junc_prob_map", | |
convert_image(images["junc_prob_map"][..., None], axis=-1), | |
global_step, dataformats="NHWC") | |
def record_test_summaries(writer, epoch, scalars): | |
""" Record testing summaries. """ | |
average = scalars["average"] | |
# Average loss | |
writer.add_scalar("Val_loss/junc_loss", average["junc_loss"], epoch) | |
writer.add_scalar("Val_loss/heatmap_loss", average["heatmap_loss"], epoch) | |
writer.add_scalar("Val_loss/total_loss", average["total_loss"], epoch) | |
# Add descriptor loss | |
if "descriptor_loss" in average.keys(): | |
key = "descriptor_loss" | |
writer.add_scalar("Val_loss/%s"%(key), average[key], epoch) | |
# Average metrics | |
writer.add_scalar("Val_metrics/junc_precision", average["junc_precision"], | |
epoch) | |
writer.add_scalar("Val_metrics/junc_precision_nms", | |
average["junc_precision_nms"], epoch) | |
writer.add_scalar("Val_metrics/junc_recall", | |
average["junc_recall"], epoch) | |
writer.add_scalar("Val_metrics/junc_recall_nms", | |
average["junc_recall_nms"], epoch) | |
writer.add_scalar("Val_metrics/heatmap_precision", | |
average["heatmap_precision"], epoch) | |
writer.add_scalar("Val_metrics/heatmap_recall", | |
average["heatmap_recall"], epoch) | |
# Add descriptor metric | |
if "matching_score" in average.keys(): | |
writer.add_scalar("Val_metrics/matching_score", | |
average["matching_score"], epoch) | |
def plot_junction_detection(image_tensor, junc_pred_tensor, | |
junc_pred_nms_tensor, junc_gt_tensor): | |
""" Plot the junction points on images. """ | |
# Get the batch_size | |
batch_size = image_tensor.shape[0] | |
# Process through batch dimension | |
junc_pred_lst = [] | |
junc_pred_nms_lst = [] | |
junc_gt_lst = [] | |
for i in range(batch_size): | |
# Convert image to 255 uint8 | |
image = (image_tensor[i, :, :, :] | |
* 255.).astype(np.uint8).transpose(1,2,0) | |
# Plot groundtruth onto image | |
junc_gt = junc_gt_tensor[i, ...] | |
coord_gt = np.where(junc_gt.squeeze() > 0) | |
points_gt = np.concatenate((coord_gt[0][..., None], | |
coord_gt[1][..., None]), | |
axis=1) | |
plot_gt = image.copy() | |
for id in range(points_gt.shape[0]): | |
cv2.circle(plot_gt, tuple(np.flip(points_gt[id, :])), 3, | |
color=(255, 0, 0), thickness=2) | |
junc_gt_lst.append(plot_gt[None, ...]) | |
# Plot junc_pred | |
junc_pred = junc_pred_tensor[i, ...] | |
coord_pred = np.where(junc_pred > 0) | |
points_pred = np.concatenate((coord_pred[0][..., None], | |
coord_pred[1][..., None]), | |
axis=1) | |
plot_pred = image.copy() | |
for id in range(points_pred.shape[0]): | |
cv2.circle(plot_pred, tuple(np.flip(points_pred[id, :])), 3, | |
color=(0, 255, 0), thickness=2) | |
junc_pred_lst.append(plot_pred[None, ...]) | |
# Plot junc_pred_nms | |
junc_pred_nms = junc_pred_nms_tensor[i, ...] | |
coord_pred_nms = np.where(junc_pred_nms > 0) | |
points_pred_nms = np.concatenate((coord_pred_nms[0][..., None], | |
coord_pred_nms[1][..., None]), | |
axis=1) | |
plot_pred_nms = image.copy() | |
for id in range(points_pred_nms.shape[0]): | |
cv2.circle(plot_pred_nms, tuple(np.flip(points_pred_nms[id, :])), | |
3, color=(0, 255, 0), thickness=2) | |
junc_pred_nms_lst.append(plot_pred_nms[None, ...]) | |
return {"junc_gt_plot": np.concatenate(junc_gt_lst, axis=0), | |
"junc_pred_plot": np.concatenate(junc_pred_lst, axis=0), | |
"junc_pred_nms_plot": np.concatenate(junc_pred_nms_lst, axis=0)} | |