Realcat
add: xoftr
7dc6568
raw
history blame
6.78 kB
import sys
from pathlib import Path
import torch
from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel
gim_path = Path(__file__).parent / "../../third_party/gim"
sys.path.append(str(gim_path))
def load_model(weight_name, checkpoints_path):
# load model
model = None
detector = None
if weight_name == "gim_dkm":
from gim.dkm.models.model_zoo.DKMv3 import DKMv3
model = DKMv3(weights=None, h=672, w=896)
elif weight_name == "gim_loftr":
from gim.loftr.config import get_cfg_defaults
from gim.loftr.loftr import LoFTR
from gim.loftr.misc import lower_config
model = LoFTR(lower_config(get_cfg_defaults())["loftr"])
elif weight_name == "gim_lightglue":
from gim.lightglue.models.matchers.lightglue import LightGlue
from gim.lightglue.superpoint import SuperPoint
detector = SuperPoint(
{
"max_num_keypoints": 2048,
"force_num_keypoints": True,
"detection_threshold": 0.0,
"nms_radius": 3,
"trainable": False,
}
)
model = LightGlue(
{
"filter_threshold": 0.1,
"flash": False,
"checkpointed": True,
}
)
# load state dict
if weight_name == "gim_dkm":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
if "encoder.net.fc" in k:
state_dict.pop(k)
model.load_state_dict(state_dict)
elif weight_name == "gim_loftr":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict)
elif weight_name == "gim_lightglue":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict.pop(k)
if k.startswith("superpoint."):
state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k)
detector.load_state_dict(state_dict)
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("superpoint."):
state_dict.pop(k)
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
model.load_state_dict(state_dict)
# eval mode
if detector is not None:
detector = detector.eval().to(DEVICE)
model = model.eval().to(DEVICE)
return model
class GIM(BaseModel):
default_conf = {
"match_threshold": 0.2,
"checkpoint_dir": gim_path / "weights",
"weights": "gim_dkm",
}
required_inputs = [
"image0",
"image1",
]
ckpt_name_dict = {
"gim_dkm": "gim_dkm_100h.ckpt",
"gim_loftr": "gim_loftr_50h.ckpt",
"gim_lightglue": "gim_lightglue_100h.ckpt",
}
def _init(self, conf):
ckpt_name = self.ckpt_name_dict[conf["weights"]]
model_path = self._download_model(
repo_id=MODEL_REPO_ID,
filename="{}/{}".format(Path(__file__).stem, ckpt_name),
)
self.aspect_ratio = 896 / 672
model = load_model(conf["weights"], model_path)
self.net = model
logger.info("Loaded GIM model")
def pad_image(self, image, aspect_ratio):
new_width = max(image.shape[3], int(image.shape[2] * aspect_ratio))
new_height = max(image.shape[2], int(image.shape[3] / aspect_ratio))
pad_width = new_width - image.shape[3]
pad_height = new_height - image.shape[2]
return torch.nn.functional.pad(
image,
(
pad_width // 2,
pad_width - pad_width // 2,
pad_height // 2,
pad_height - pad_height // 2,
),
)
def rescale_kpts(self, sparse_matches, shape0, shape1):
kpts0 = torch.stack(
(
shape0[1] * (sparse_matches[:, 0] + 1) / 2,
shape0[0] * (sparse_matches[:, 1] + 1) / 2,
),
dim=-1,
)
kpts1 = torch.stack(
(
shape1[1] * (sparse_matches[:, 2] + 1) / 2,
shape1[0] * (sparse_matches[:, 3] + 1) / 2,
),
dim=-1,
)
return kpts0, kpts1
def compute_mask(self, kpts0, kpts1, orig_shape0, orig_shape1):
mask = (
(kpts0[:, 0] > 0)
& (kpts0[:, 1] > 0)
& (kpts1[:, 0] > 0)
& (kpts1[:, 1] > 0)
)
mask &= (
(kpts0[:, 0] <= (orig_shape0[1] - 1))
& (kpts1[:, 0] <= (orig_shape1[1] - 1))
& (kpts0[:, 1] <= (orig_shape0[0] - 1))
& (kpts1[:, 1] <= (orig_shape1[0] - 1))
)
return mask
def _forward(self, data):
# TODO: only support dkm+gim
image0, image1 = self.pad_image(
data["image0"], self.aspect_ratio
), self.pad_image(data["image1"], self.aspect_ratio)
dense_matches, dense_certainty = self.net.match(image0, image1)
sparse_matches, mconf = self.net.sample(
dense_matches, dense_certainty, self.conf["max_keypoints"]
)
kpts0, kpts1 = self.rescale_kpts(
sparse_matches, image0.shape[-2:], image1.shape[-2:]
)
mask = self.compute_mask(
kpts0, kpts1, data["image0"].shape[-2:], data["image1"].shape[-2:]
)
b_ids, i_ids = torch.where(mconf[None])
pred = {
"keypoints0": kpts0[i_ids],
"keypoints1": kpts1[i_ids],
"confidence": mconf[i_ids],
"batch_indexes": b_ids,
}
scores, b_ids = pred["confidence"], pred["batch_indexes"]
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
pred["confidence"], pred["batch_indexes"] = scores[mask], b_ids[mask]
pred["keypoints0"], pred["keypoints1"] = kpts0[mask], kpts1[mask]
out = {
"keypoints0": pred["keypoints0"],
"keypoints1": pred["keypoints1"],
}
return out