Realcat
fix: eloftr
63f3cf2
raw
history blame
8.64 kB
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> extract_features.py
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 07/02/2024 14:49
=================================================='''
import os
import os.path as osp
import h5py
import numpy as np
import progressbar
import yaml
import torch
import cv2
import torch.utils.data as Data
from tqdm import tqdm
from types import SimpleNamespace
import logging
import pprint
from pathlib import Path
import argparse
from nets.sfd2 import ResNet4x, extract_sfd2_return
from nets.superpoint import SuperPoint, extract_sp_return
confs = {
'superpoint-n4096': {
'output': 'feats-superpoint-n4096',
'model': {
'name': 'superpoint',
'outdim': 256,
'use_stability': False,
'nms_radius': 3,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/superpoint_v1.pth"),
},
'preprocessing': {
'grayscale': True,
'resize_max': False,
},
},
'resnet4x-20230511-210205-pho-0005': {
'output': 'feats-resnet4x-20230511-210205-pho-0005',
'model': {
'outdim': 128,
'name': 'resnet4x',
'use_stability': False,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/sfd2_20230511_210205_resnet4x.79.pth"),
},
'preprocessing': {
'grayscale': False,
'resize_max': False,
},
'mask': False,
},
'sfd2': {
'output': 'feats-sfd2',
'model': {
'outdim': 128,
'name': 'resnet4x',
'use_stability': False,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/sfd2_20230511_210205_resnet4x.79.pth"),
},
'preprocessing': {
'grayscale': False,
'resize_max': False,
},
'mask': False,
},
}
class ImageDataset(Data.Dataset):
default_conf = {
'globs': ['*.jpg', '*.png', '*.jpeg', '*.JPG', '*.PNG'],
'grayscale': False,
'resize_max': None,
'resize_force': False,
}
def __init__(self, root, conf, image_list=None,
mask_root=None):
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.root = root
self.paths = []
if image_list is None:
for g in conf.globs:
self.paths += list(Path(root).glob('**/' + g))
if len(self.paths) == 0:
raise ValueError(f'Could not find any image in root: {root}.')
self.paths = [i.relative_to(root) for i in self.paths]
else:
with open(image_list, "r") as f:
lines = f.readlines()
for l in lines:
l = l.strip()
self.paths.append(Path(l))
logging.info(f'Found {len(self.paths)} images in root {root}.')
if mask_root is not None:
self.mask_root = mask_root
else:
self.mask_root = None
def __getitem__(self, idx):
path = self.paths[idx]
if self.conf.grayscale:
mode = cv2.IMREAD_GRAYSCALE
else:
mode = cv2.IMREAD_COLOR
image = cv2.imread(str(self.root / path), mode)
if not self.conf.grayscale:
image = image[:, :, ::-1] # BGR to RGB
if image is None:
raise ValueError(f'Cannot read image {str(path)}.')
image = image.astype(np.float32)
size = image.shape[:2][::-1]
w, h = size
if self.conf.resize_max and (self.conf.resize_force
or max(w, h) > self.conf.resize_max):
scale = self.conf.resize_max / max(h, w)
h_new, w_new = int(round(h * scale)), int(round(w * scale))
image = cv2.resize(
image, (w_new, h_new), interpolation=cv2.INTER_CUBIC)
if self.conf.grayscale:
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = image / 255.
data = {
'name': str(path),
'image': image,
'original_size': np.array(size),
}
if self.mask_root is not None:
mask_path = Path(str(path).replace("jpg", "png"))
if osp.exists(mask_path):
mask = cv2.imread(str(self.mask_root / mask_path))
mask = cv2.resize(mask, dsize=(image.shape[2], image.shape[1]), interpolation=cv2.INTER_NEAREST)
else:
mask = np.zeros(shape=(image.shape[1], image.shape[2], 3), dtype=np.uint8)
data['mask'] = mask
return data
def __len__(self):
return len(self.paths)
def get_model(model_name, weight_path, outdim=128, **kwargs):
if model_name == 'superpoint':
model = SuperPoint(config={
'descriptor_dim': 256,
'nms_radius': 4,
'keypoint_threshold': 0.005,
'max_keypoints': -1,
'remove_borders': 4,
'weight_path': weight_path,
}).eval()
extractor = extract_sp_return
if model_name == 'resnet4x':
model = ResNet4x(outdim=outdim).eval()
model.load_state_dict(torch.load(weight_path)['state_dict'], strict=True)
extractor = extract_sfd2_return
return model, extractor
@torch.no_grad()
def main(conf, image_dir, export_dir):
logging.info('Extracting local features with configuration:'
f'\n{pprint.pformat(conf)}')
model, extractor = get_model(model_name=conf['model']['name'], weight_path=conf["model"]["model_fn"],
use_stability=conf['model']['use_stability'], outdim=conf['model']['outdim'])
model = model.cuda()
loader = ImageDataset(image_dir,
conf['preprocessing'],
image_list=args.image_list,
mask_root=None)
loader = torch.utils.data.DataLoader(loader, num_workers=4)
os.makedirs(export_dir, exist_ok=True)
feature_path = Path(export_dir, conf['output'] + '.h5')
feature_path.parent.mkdir(exist_ok=True, parents=True)
feature_file = h5py.File(str(feature_path), 'a')
with tqdm(total=len(loader)) as t:
for idx, data in enumerate(loader):
t.update()
pred = extractor(model, img=data["image"],
topK=conf["model"]["max_keypoints"],
mask=None,
conf_th=conf["model"]["conf_th"],
scales=conf["model"]["scales"],
)
# pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
pred['descriptors'] = pred['descriptors'].transpose()
t.set_postfix(npoints=pred['keypoints'].shape[0])
# print(pred['keypoints'].shape)
pred['image_size'] = original_size = data['original_size'][0].numpy()
# pred['descriptors'] = pred['descriptors'].T
if 'keypoints' in pred.keys():
size = np.array(data['image'].shape[-2:][::-1])
scales = (original_size / size).astype(np.float32)
pred['keypoints'] = (pred['keypoints'] + .5) * scales[None] - .5
grp = feature_file.create_group(data['name'][0])
for k, v in pred.items():
# print(k, v.shape)
grp.create_dataset(k, data=v)
del pred
feature_file.close()
logging.info('Finished exporting features.')
return feature_path
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_dir', type=Path, required=True)
parser.add_argument('--image_list', type=str, default=None)
parser.add_argument('--mask_dir', type=Path, default=None)
parser.add_argument('--export_dir', type=Path, required=True)
parser.add_argument('--conf', type=str, required=True, choices=list(confs.keys()))
args = parser.parse_args()
main(confs[args.conf], args.image_dir, args.export_dir)