Vincentqyw
update: features and matchers
437b5f6
raw
history blame
13.4 kB
from collections import defaultdict
import pprint
from loguru import logger
from pathlib import Path
import torch
import numpy as np
import pytorch_lightning as pl
from matplotlib import pyplot as plt
from src.ASpanFormer.aspanformer import ASpanFormer
from src.ASpanFormer.utils.supervision import compute_supervision_coarse, compute_supervision_fine
from src.losses.aspan_loss import ASpanLoss
from src.optimizers import build_optimizer, build_scheduler
from src.utils.metrics import (
compute_symmetrical_epipolar_errors,compute_symmetrical_epipolar_errors_offset_bidirectional,
compute_pose_errors,
aggregate_metrics
)
from src.utils.plotting import make_matching_figures,make_matching_figures_offset
from src.utils.comm import gather, all_gather
from src.utils.misc import lower_config, flattenList
from src.utils.profiler import PassThroughProfiler
class PL_ASpanFormer(pl.LightningModule):
def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None):
"""
TODO:
- use the new version of PL logging API.
"""
super().__init__()
# Misc
self.config = config # full config
_config = lower_config(self.config)
self.loftr_cfg = lower_config(_config['aspan'])
self.profiler = profiler or PassThroughProfiler()
self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1)
# Matcher: LoFTR
self.matcher = ASpanFormer(config=_config['aspan'])
self.loss = ASpanLoss(_config)
# Pretrained weights
print(pretrained_ckpt)
if pretrained_ckpt:
print('load')
state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict']
msg=self.matcher.load_state_dict(state_dict, strict=False)
print(msg)
logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint")
# Testing
self.dump_dir = dump_dir
def configure_optimizers(self):
# FIXME: The scheduler did not work properly when `--resume_from_checkpoint`
optimizer = build_optimizer(self, self.config)
scheduler = build_scheduler(self.config, optimizer)
return [optimizer], [scheduler]
def optimizer_step(
self, epoch, batch_idx, optimizer, optimizer_idx,
optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
# learning rate warm up
warmup_step = self.config.TRAINER.WARMUP_STEP
if self.trainer.global_step < warmup_step:
if self.config.TRAINER.WARMUP_TYPE == 'linear':
base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR
lr = base_lr + \
(self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \
abs(self.config.TRAINER.TRUE_LR - base_lr)
for pg in optimizer.param_groups:
pg['lr'] = lr
elif self.config.TRAINER.WARMUP_TYPE == 'constant':
pass
else:
raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}')
# update params
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
def _trainval_inference(self, batch):
with self.profiler.profile("Compute coarse supervision"):
compute_supervision_coarse(batch, self.config)
with self.profiler.profile("LoFTR"):
self.matcher(batch)
with self.profiler.profile("Compute fine supervision"):
compute_supervision_fine(batch, self.config)
with self.profiler.profile("Compute losses"):
self.loss(batch)
def _compute_metrics(self, batch):
with self.profiler.profile("Copmute metrics"):
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match
compute_symmetrical_epipolar_errors_offset_bidirectional(batch) # compute epi_errs for offset match
compute_pose_errors(batch, self.config) # compute R_errs, t_errs, pose_errs for each pair
rel_pair_names = list(zip(*batch['pair_names']))
bs = batch['image0'].size(0)
metrics = {
# to filter duplicate pairs caused by DistributedSampler
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
'epi_errs': [batch['epi_errs'][batch['m_bids'] == b].cpu().numpy() for b in range(bs)],
'epi_errs_offset': [batch['epi_errs_offset_left'][batch['offset_bids_left'] == b].cpu().numpy() for b in range(bs)], #only consider left side
'R_errs': batch['R_errs'],
't_errs': batch['t_errs'],
'inliers': batch['inliers']}
ret_dict = {'metrics': metrics}
return ret_dict, rel_pair_names
def training_step(self, batch, batch_idx):
self._trainval_inference(batch)
# logging
if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0:
# scalars
for k, v in batch['loss_scalars'].items():
if not k.startswith('loss_flow') and not k.startswith('conf_'):
self.logger.experiment.add_scalar(f'train/{k}', v, self.global_step)
#log offset_loss and conf for each layer and level
layer_num=self.loftr_cfg['coarse']['layer_num']
for layer_index in range(layer_num):
log_title='layer_'+str(layer_index)
self.logger.experiment.add_scalar(log_title+'/offset_loss', batch['loss_scalars']['loss_flow_'+str(layer_index)], self.global_step)
self.logger.experiment.add_scalar(log_title+'/conf_', batch['loss_scalars']['conf_'+str(layer_index)],self.global_step)
# net-params
if self.config.ASPAN.MATCH_COARSE.MATCH_TYPE == 'sinkhorn':
self.logger.experiment.add_scalar(
f'skh_bin_score', self.matcher.coarse_matching.bin_score.clone().detach().cpu().data, self.global_step)
# figures
if self.config.TRAINER.ENABLE_PLOTTING:
compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match
figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE)
for k, v in figures.items():
self.logger.experiment.add_figure(f'train_match/{k}', v, self.global_step)
#plot offset
if self.global_step%200==0:
compute_symmetrical_epipolar_errors_offset_bidirectional(batch)
figures_left = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_left')
figures_right = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_right')
for k, v in figures_left.items():
self.logger.experiment.add_figure(f'train_offset/{k}'+'_left', v, self.global_step)
figures = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_right')
for k, v in figures_right.items():
self.logger.experiment.add_figure(f'train_offset/{k}'+'_right', v, self.global_step)
return {'loss': batch['loss']}
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
if self.trainer.global_rank == 0:
self.logger.experiment.add_scalar(
'train/avg_loss_on_epoch', avg_loss,
global_step=self.current_epoch)
def validation_step(self, batch, batch_idx):
self._trainval_inference(batch)
ret_dict, _ = self._compute_metrics(batch) #this func also compute the epi_errors
val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1)
figures = {self.config.TRAINER.PLOT_MODE: []}
figures_offset = {self.config.TRAINER.PLOT_MODE: []}
if batch_idx % val_plot_interval == 0:
figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE)
figures_offset=make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,'_left')
return {
**ret_dict,
'loss_scalars': batch['loss_scalars'],
'figures': figures,
'figures_offset_left':figures_offset
}
def validation_epoch_end(self, outputs):
# handle multiple validation sets
multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs
multi_val_metrics = defaultdict(list)
for valset_idx, outputs in enumerate(multi_outputs):
# since pl performs sanity_check at the very begining of the training
cur_epoch = self.trainer.current_epoch
if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check:
cur_epoch = -1
# 1. loss_scalars: dict of list, on cpu
_loss_scalars = [o['loss_scalars'] for o in outputs]
loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]}
# 2. val metrics: dict of list, numpy
_metrics = [o['metrics'] for o in outputs]
metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR)
for thr in [5, 10, 20]:
multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}'])
# 3. figures
_figures = [o['figures'] for o in outputs]
figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]}
# tensorboard records only on rank 0
if self.trainer.global_rank == 0:
for k, v in loss_scalars.items():
mean_v = torch.stack(v).mean()
self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch)
for k, v in val_metrics_4tb.items():
self.logger.experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch)
for k, v in figures.items():
if self.trainer.global_rank == 0:
for plot_idx, fig in enumerate(v):
self.logger.experiment.add_figure(
f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True)
plt.close('all')
for thr in [5, 10, 20]:
# log on all ranks for ModelCheckpoint callback to work properly
self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}']))) # ckpt monitors on this
def test_step(self, batch, batch_idx):
with self.profiler.profile("LoFTR"):
self.matcher(batch)
ret_dict, rel_pair_names = self._compute_metrics(batch)
with self.profiler.profile("dump_results"):
if self.dump_dir is not None:
# dump results for further analysis
keys_to_save = {'mkpts0_f', 'mkpts1_f', 'mconf', 'epi_errs'}
pair_names = list(zip(*batch['pair_names']))
bs = batch['image0'].shape[0]
dumps = []
for b_id in range(bs):
item = {}
mask = batch['m_bids'] == b_id
item['pair_names'] = pair_names[b_id]
item['identifier'] = '#'.join(rel_pair_names[b_id])
for key in keys_to_save:
item[key] = batch[key][mask].cpu().numpy()
for key in ['R_errs', 't_errs', 'inliers']:
item[key] = batch[key][b_id]
dumps.append(item)
ret_dict['dumps'] = dumps
return ret_dict
def test_epoch_end(self, outputs):
# metrics: dict of list, numpy
_metrics = [o['metrics'] for o in outputs]
metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]}
# [{key: [{...}, *#bs]}, *#batch]
if self.dump_dir is not None:
Path(self.dump_dir).mkdir(parents=True, exist_ok=True)
_dumps = flattenList([o['dumps'] for o in outputs]) # [{...}, #bs*#batch]
dumps = flattenList(gather(_dumps)) # [{...}, #proc*#bs*#batch]
logger.info(f'Prediction and evaluation results will be saved to: {self.dump_dir}')
if self.trainer.global_rank == 0:
print(self.profiler.summary())
val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR)
logger.info('\n' + pprint.pformat(val_metrics_4tb))
if self.dump_dir is not None:
np.save(Path(self.dump_dir) / 'LoFTR_pred_eval', dumps)