Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File pram -> segnetvit | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 29/01/2024 14:52 | |
==================================================''' | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from nets.utils import normalize_keypoints | |
def rotate_half(x: torch.Tensor) -> torch.Tensor: | |
x = x.unflatten(-1, (-1, 2)) | |
x1, x2 = x.unbind(dim=-1) | |
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2) | |
def apply_cached_rotary_emb( | |
freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
return (t * freqs[0]) + (rotate_half(t) * freqs[1]) | |
class LearnableFourierPositionalEncoding(nn.Module): | |
def __init__(self, M: int, dim: int, F_dim: int = None, | |
gamma: float = 1.0) -> None: | |
super().__init__() | |
F_dim = F_dim if F_dim is not None else dim | |
self.gamma = gamma | |
self.Wr = nn.Linear(M, F_dim // 2, bias=False) | |
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" encode position vector """ | |
projected = self.Wr(x) | |
cosines, sines = torch.cos(projected), torch.sin(projected) | |
emb = torch.stack([cosines, sines], 0).unsqueeze(-3) | |
return emb.repeat_interleave(2, dim=-1) | |
class KeypointEncoder(nn.Module): | |
""" Joint encoding of visual appearance and location using MLPs""" | |
def __init__(self): | |
super().__init__() | |
self.encoder = nn.Sequential( | |
nn.Linear(2, 32), | |
nn.LayerNorm(32, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(32, 64), | |
nn.LayerNorm(64, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(64, 128), | |
nn.LayerNorm(128, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(128, 256), | |
) | |
def forward(self, kpts, scores=None): | |
if scores is not None: | |
inputs = [kpts, scores.unsqueeze(2)] # [B, N, 2] + [B, N, 1] | |
return self.encoder(torch.cat(inputs, dim=-1)) | |
else: | |
return self.encoder(kpts) | |
class Attention(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, q, k, v): | |
s = q.shape[-1] ** -0.5 | |
attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1) | |
return torch.einsum('...ij,...jd->...id', attn, v) | |
class SelfMultiHeadAttention(nn.Module): | |
def __init__(self, feat_dim: int, hidden_dim: int, num_heads: int): | |
super().__init__() | |
self.feat_dim = feat_dim | |
self.num_heads = num_heads | |
assert feat_dim % num_heads == 0 | |
self.head_dim = feat_dim // num_heads | |
self.qkv = nn.Linear(feat_dim, hidden_dim * 3) | |
self.attn = Attention() | |
self.proj = nn.Linear(hidden_dim, hidden_dim) | |
self.mlp = nn.Sequential( | |
nn.Linear(feat_dim + hidden_dim, feat_dim * 2), | |
nn.LayerNorm(feat_dim * 2, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(feat_dim * 2, feat_dim) | |
) | |
def forward(self, x, encoding=None): | |
qkv = self.qkv(x) | |
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2) | |
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2] | |
if encoding is not None: | |
q = apply_cached_rotary_emb(encoding, q) | |
k = apply_cached_rotary_emb(encoding, k) | |
attn = self.attn(q, k, v) | |
message = self.proj(attn.transpose(1, 2).flatten(start_dim=-2)) | |
return x + self.mlp(torch.cat([x, message], -1)) | |
class SegGNNViT(nn.Module): | |
def __init__(self, feature_dim: int, n_layers: int, hidden_dim: int = 256, num_heads: int = 4, **kwargs): | |
super(SegGNNViT, self).__init__() | |
self.layers = nn.ModuleList([ | |
SelfMultiHeadAttention(feat_dim=feature_dim, hidden_dim=hidden_dim, num_heads=num_heads) | |
for _ in range(n_layers) | |
]) | |
def forward(self, desc, encoding=None): | |
for i, layer in enumerate(self.layers): | |
desc = layer(desc, encoding) | |
# desc = desc + delta // should be removed as this is already done in self-attention | |
return desc | |
class SegNetViT(nn.Module): | |
default_config = { | |
'descriptor_dim': 256, | |
'output_dim': 1024, | |
'n_class': 512, | |
'keypoint_encoder': [32, 64, 128, 256], | |
'n_layers': 15, | |
'num_heads': 4, | |
'hidden_dim': 256, | |
'with_score': False, | |
'with_global': False, | |
'with_cls': False, | |
'with_sc': False, | |
} | |
def __init__(self, config={}): | |
super(SegNetViT, self).__init__() | |
self.config = {**self.default_config, **config} | |
self.with_cls = self.config['with_cls'] | |
self.with_sc = self.config['with_sc'] | |
self.n_layers = self.config['n_layers'] | |
self.gnn = SegGNNViT( | |
feature_dim=self.config['hidden_dim'], | |
n_layers=self.config['n_layers'], | |
hidden_dim=self.config['hidden_dim'], | |
num_heads=self.config['num_heads'], | |
) | |
self.with_score = self.config['with_score'] | |
self.kenc = LearnableFourierPositionalEncoding(2, self.config['hidden_dim'] // self.config['num_heads'], | |
self.config['hidden_dim'] // self.config['num_heads']) | |
self.input_proj = nn.Linear(in_features=self.config['descriptor_dim'], | |
out_features=self.config['hidden_dim']) | |
self.seg = nn.Sequential( | |
nn.Linear(in_features=self.config['hidden_dim'], out_features=self.config['output_dim']), | |
nn.LayerNorm(self.config['output_dim'], elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(self.config['output_dim'], self.config['n_class']) | |
) | |
if self.with_sc: | |
self.sc = nn.Sequential( | |
nn.Linear(in_features=config['hidden_dim'], out_features=self.config['output_dim']), | |
nn.LayerNorm(self.config['output_dim'], elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(self.config['output_dim'], 3) | |
) | |
def preprocess(self, data): | |
desc0 = data['seg_descriptors'] | |
if 'norm_keypoints' in data.keys(): | |
norm_kpts0 = data['norm_keypoints'] | |
elif 'image' in data.keys(): | |
kpts0 = data['keypoints'] | |
norm_kpts0 = normalize_keypoints(kpts0, data['image'].shape) | |
else: | |
raise ValueError('Require image shape for keypoint coordinate normalization') | |
enc0 = self.kenc(norm_kpts0) | |
return desc0, enc0 | |
def forward(self, data): | |
desc, enc = self.preprocess(data=data) | |
desc = self.input_proj(desc) | |
desc = self.gnn(desc, enc) | |
seg_output = self.seg(desc) # [B, N, C] | |
output = { | |
'prediction': seg_output, | |
} | |
if self.with_sc: | |
sc_output = self.sc(desc) | |
output['sc'] = sc_output | |
return output | |