Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File pram -> sfd2 | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 07/02/2024 14:53 | |
==================================================''' | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
import torchvision.transforms as tvf | |
RGB_mean = [0.485, 0.456, 0.406] | |
RGB_std = [0.229, 0.224, 0.225] | |
norm_RGB = tvf.Compose([tvf.Normalize(mean=RGB_mean, std=RGB_std)]) | |
def simple_nms(scores, nms_radius: int): | |
""" Fast Non-maximum suppression to remove nearby points """ | |
assert (nms_radius >= 0) | |
def max_pool(x): | |
return torch.nn.functional.max_pool2d( | |
x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) | |
zeros = torch.zeros_like(scores) | |
max_mask = scores == max_pool(scores) | |
for _ in range(2): | |
supp_mask = max_pool(max_mask.float()) > 0 | |
supp_scores = torch.where(supp_mask, zeros, scores) | |
new_max_mask = supp_scores == max_pool(supp_scores) | |
max_mask = max_mask | (new_max_mask & (~supp_mask)) | |
return torch.where(max_mask, scores, zeros) | |
def remove_borders(keypoints, scores, border: int, height: int, width: int): | |
""" Removes keypoints too close to the border """ | |
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) | |
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) | |
mask = mask_h & mask_w | |
return keypoints[mask], scores[mask] | |
def top_k_keypoints(keypoints, scores, k: int): | |
if k >= len(keypoints): | |
return keypoints, scores | |
scores, indices = torch.topk(scores, k, dim=0) | |
return keypoints[indices], scores | |
def sample_descriptors(keypoints, descriptors, s: int = 8): | |
""" Interpolate descriptors at keypoint locations """ | |
b, c, h, w = descriptors.shape | |
keypoints = keypoints - s / 2 + 0.5 | |
keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], | |
).to(keypoints)[None] | |
keypoints = keypoints * 2 - 1 # normalize to (-1, 1) | |
descriptors = torch.nn.functional.grid_sample( | |
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', align_corners=True) | |
descriptors = torch.nn.functional.normalize( | |
descriptors.reshape(b, c, -1), p=2, dim=1) | |
return descriptors | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
def conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, use_bn=False, groups=1, dilation=1): | |
if not use_bn: | |
return nn.Sequential( | |
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, | |
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation), | |
nn.ReLU(inplace=True), | |
) | |
else: | |
return nn.Sequential( | |
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, | |
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
) | |
class ResBlock(nn.Module): | |
def __init__(self, inplanes, outplanes, stride=1, groups=32, dilation=1, norm_layer=None): | |
super(ResBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self.conv1 = conv1x1(inplanes, outplanes) | |
self.bn1 = norm_layer(outplanes) | |
self.conv2 = conv3x3(outplanes, outplanes, stride, groups, dilation) | |
self.bn2 = norm_layer(outplanes) | |
self.conv3 = conv1x1(outplanes, outplanes) | |
self.bn3 = norm_layer(outplanes) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet4x(nn.Module): | |
default_config = { | |
'conf_th': 0.005, | |
'remove_borders': 4, | |
'min_keypoints': 128, | |
'max_keypoints': 4096, | |
} | |
def __init__(self, inputdim=3, outdim=128, desc_compressor=None): | |
super().__init__() | |
self.outdim = outdim | |
self.desc_compressor = desc_compressor | |
d1, d2, d3, d4, d5, d6 = 64, 128, 256, 256, 256, 256 | |
self.conv1a = conv(in_channels=inputdim, out_channels=d1, kernel_size=3, use_bn=True) | |
self.conv1b = conv(in_channels=d1, out_channels=d1, kernel_size=3, stride=2, use_bn=True) | |
self.conv2a = conv(in_channels=d1, out_channels=d2, kernel_size=3, use_bn=True) | |
self.conv2b = conv(in_channels=d2, out_channels=d2, kernel_size=3, stride=2, use_bn=True) | |
self.conv3a = conv(in_channels=d2, out_channels=d3, kernel_size=3, use_bn=True) | |
self.conv3b = conv(in_channels=d3, out_channels=d3, kernel_size=3, use_bn=True) | |
self.conv4 = nn.Sequential( | |
ResBlock(inplanes=256, outplanes=256, groups=32), | |
ResBlock(inplanes=256, outplanes=256, groups=32), | |
ResBlock(inplanes=256, outplanes=256, groups=32), | |
) | |
self.convPa = nn.Sequential( | |
torch.nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), | |
) | |
self.convDa = nn.Sequential( | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) | |
) | |
self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0) | |
self.convDb = torch.nn.Conv2d(256, outdim, kernel_size=1, stride=1, padding=0) | |
def det(self, x): | |
out1a = self.conv1a(x) | |
out1b = self.conv1b(out1a) | |
out2a = self.conv2a(out1b) | |
out2b = self.conv2b(out2a) | |
out3a = self.conv3a(out2b) | |
out3b = self.conv3b(out3a) | |
out4 = self.conv4(out3b) | |
cPa = self.convPa(out4) | |
logits = self.convPb(cPa) | |
full_semi = torch.softmax(logits, dim=1) | |
semi = full_semi[:, :-1, :, :] | |
Hc, Wc = semi.size(2), semi.size(3) | |
score = semi.permute([0, 2, 3, 1]) | |
score = score.view(score.size(0), Hc, Wc, 8, 8) | |
score = score.permute([0, 1, 3, 2, 4]) | |
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8) | |
# Descriptor Head | |
cDa = self.convDa(out4) | |
desc = self.convDb(cDa) | |
desc = F.normalize(desc, dim=1) | |
return score, desc | |
def forward(self, batch): | |
out1a = self.conv1a(batch['image']) | |
out1b = self.conv1b(out1a) | |
out2a = self.conv2a(out1b) | |
out2b = self.conv2b(out2a) | |
out3a = self.conv3a(out2b) | |
out3b = self.conv3b(out3a) | |
out4 = self.conv4(out3b) | |
cPa = self.convPa(out4) | |
logits = self.convPb(cPa) | |
full_semi = torch.softmax(logits, dim=1) | |
semi = full_semi[:, :-1, :, :] | |
Hc, Wc = semi.size(2), semi.size(3) | |
score = semi.permute([0, 2, 3, 1]) | |
score = score.view(score.size(0), Hc, Wc, 8, 8) | |
score = score.permute([0, 1, 3, 2, 4]) | |
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8) | |
# Descriptor Head | |
cDa = self.convDa(out4) | |
desc = self.convDb(cDa) | |
desc = F.normalize(desc, dim=1) | |
return { | |
'dense_features': desc, | |
'scores': score, | |
'logits': logits, | |
'semi_map': semi, | |
} | |
def extract_patches(self, batch): | |
out1a = self.conv1a(batch['image']) | |
out1b = self.conv1b(out1a) | |
out2a = self.conv2a(out1b) | |
out2b = self.conv2b(out2a) | |
out3a = self.conv3a(out2b) | |
out3b = self.conv3b(out3a) | |
out4 = self.conv4(out3b) | |
cPa = self.convPa(out4) | |
logits = self.convPb(cPa) | |
full_semi = torch.softmax(logits, dim=1) | |
semi = full_semi[:, :-1, :, :] | |
Hc, Wc = semi.size(2), semi.size(3) | |
score = semi.permute([0, 2, 3, 1]) | |
score = score.view(score.size(0), Hc, Wc, 8, 8) | |
score = score.permute([0, 1, 3, 2, 4]) | |
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8) | |
# Descriptor Head | |
cDa = self.convDa(out4) | |
desc = self.convDb(cDa) | |
desc = F.normalize(desc, dim=1) | |
return { | |
'dense_features': desc, | |
'scores': score, | |
'logits': logits, | |
'semi_map': semi, | |
} | |
def extract_local_global(self, data, | |
config={ | |
'conf_th': 0.005, | |
'remove_borders': 4, | |
'min_keypoints': 128, | |
'max_keypoints': 4096, | |
} | |
): | |
config = {**self.default_config, **config} | |
b, ic, ih, iw = data['image'].shape | |
out1a = self.conv1a(data['image']) | |
out1b = self.conv1b(out1a) # 64 | |
out2a = self.conv2a(out1b) | |
out2b = self.conv2b(out2a) # 128 | |
out3a = self.conv3a(out2b) | |
out3b = self.conv3b(out3a) # 256 | |
out4 = self.conv4(out3b) # 256 | |
cPa = self.convPa(out4) | |
logits = self.convPb(cPa) | |
full_semi = torch.softmax(logits, dim=1) | |
semi = full_semi[:, :-1, :, :] | |
Hc, Wc = semi.size(2), semi.size(3) | |
score = semi.permute([0, 2, 3, 1]) | |
score = score.view(score.size(0), Hc, Wc, 8, 8) | |
score = score.permute([0, 1, 3, 2, 4]) | |
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8) | |
if Hc * 8 != ih or Wc * 8 != iw: | |
score = F.interpolate(score.unsqueeze(1), size=[ih, iw], align_corners=True, mode='bilinear') | |
score = score.squeeze(1) | |
# extract keypoints | |
nms_scores = simple_nms(scores=score, nms_radius=4) | |
keypoints = [ | |
torch.nonzero(s >= config['conf_th']) | |
for s in nms_scores] | |
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] | |
if len(scores[0]) <= config['min_keypoints']: | |
keypoints = [ | |
torch.nonzero(s >= config['conf_th'] * 0.5) | |
for s in nms_scores] | |
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] | |
# Discard keypoints near the image borders | |
keypoints, scores = list(zip(*[ | |
remove_borders(k, s, config['remove_borders'], ih, iw) | |
for k, s in zip(keypoints, scores)])) | |
# Keep the k keypoints with highest score | |
if config['max_keypoints'] >= 0: | |
keypoints, scores = list(zip(*[ | |
top_k_keypoints(k, s, config['max_keypoints']) | |
for k, s in zip(keypoints, scores)])) | |
# Convert (h, w) to (x, y) | |
keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
# Descriptor Head | |
cDa = self.convDa(out4) | |
desc_map = self.convDb(cDa) | |
desc_map = F.normalize(desc_map, dim=1) | |
descriptors = [sample_descriptors(k[None], d[None], 4)[0] | |
for k, d in zip(keypoints, desc_map)] | |
return { | |
'score_map': score, | |
'desc_map': desc_map, | |
'mid_features': out4, | |
'global_descriptors': [out1b, out2b, out3b, out4], | |
'keypoints': keypoints, | |
'scores': scores, | |
'descriptors': descriptors, | |
} | |
def sample(self, score_map, semi_descs, kpts, s=4, norm_desc=True): | |
# print('sample: ', score_map.shape, semi_descs.shape, kpts.shape) | |
b, c, h, w = semi_descs.shape | |
norm_kpts = kpts - s / 2 + 0.5 | |
norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], | |
).to(norm_kpts)[None] | |
norm_kpts = norm_kpts * 2 - 1 | |
# args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {} | |
descriptors = torch.nn.functional.grid_sample( | |
semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True) | |
if norm_desc: | |
descriptors = torch.nn.functional.normalize( | |
descriptors.reshape(b, c, -1), p=2, dim=1) | |
else: | |
descriptors = descriptors.reshape(b, c, -1) | |
# print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()), | |
# torch.max(kpts[:, 0].long())) | |
scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()] | |
return scores, descriptors.squeeze(0) | |
class DescriptorCompressor(nn.Module): | |
def __init__(self, inputdim: int, outdim: int): | |
super().__init__() | |
self.inputdim = inputdim | |
self.outdim = outdim | |
self.conv = nn.Conv1d(in_channels=inputdim, out_channels=outdim, kernel_size=1, padding=0, bias=True) | |
def forward(self, x): | |
# b, c, n = x.shape | |
out = self.conv(x) | |
out = F.normalize(out, p=2, dim=1) | |
return out | |
def extract_sfd2_return(model, img, conf_th=0.001, | |
mask=None, | |
topK=-1, | |
min_keypoints=0, | |
**kwargs): | |
old_bm = torch.backends.cudnn.benchmark | |
torch.backends.cudnn.benchmark = False # speedup | |
img = norm_RGB(img.squeeze()) | |
img = img[None] | |
img = img.cuda() | |
B, one, H, W = img.shape | |
all_pts = [] | |
all_descs = [] | |
if 'scales' in kwargs.keys(): | |
scales = kwargs.get('scales') | |
else: | |
scales = [1.0] | |
for s in scales: | |
if s == 1.0: | |
new_img = img | |
else: | |
nh = int(H * s) | |
nw = int(W * s) | |
new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True) | |
nh, nw = new_img.shape[2:] | |
with torch.no_grad(): | |
heatmap, coarse_desc = model.det(new_img) | |
# print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape) | |
if len(heatmap.size()) == 3: | |
heatmap = heatmap.unsqueeze(1) | |
if len(heatmap.size()) == 2: | |
heatmap = heatmap.unsqueeze(0) | |
heatmap = heatmap.unsqueeze(1) | |
# print(heatmap.shape) | |
if heatmap.size(2) != nh or heatmap.size(3) != nw: | |
heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True) | |
conf_thresh = conf_th | |
nms_dist = 3 | |
border_remove = 4 | |
scores = simple_nms(heatmap, nms_radius=nms_dist) | |
keypoints = [ | |
torch.nonzero(s > conf_thresh) | |
for s in scores] | |
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] | |
# print('scores in return: ', len(scores[0])) | |
# print(keypoints[0].shape) | |
keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
scores = scores[0].data.cpu().numpy().squeeze() | |
keypoints = keypoints[0].data.cpu().numpy().squeeze() | |
pts = keypoints.transpose() | |
pts[2, :] = scores | |
inds = np.argsort(pts[2, :]) | |
pts = pts[:, inds[::-1]] # Sort by confidence. | |
# Remove points along border. | |
bord = border_remove | |
toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord)) | |
toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord)) | |
toremove = np.logical_or(toremoveW, toremoveH) | |
pts = pts[:, ~toremove] | |
# valid_idex = heatmap > conf_thresh | |
# valid_score = heatmap[valid_idex] | |
# """ | |
# --- Process descriptor. | |
# coarse_desc = coarse_desc.data.cpu().numpy().squeeze() | |
D = coarse_desc.size(1) | |
if pts.shape[1] == 0: | |
desc = np.zeros((D, 0)) | |
else: | |
if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw: | |
desc = coarse_desc[:, :, pts[1, :], pts[0, :]] | |
desc = desc.data.cpu().numpy().reshape(D, -1) | |
else: | |
# Interpolate into descriptor map using 2D point locations. | |
samp_pts = torch.from_numpy(pts[:2, :].copy()) | |
samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1. | |
samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1. | |
samp_pts = samp_pts.transpose(0, 1).contiguous() | |
samp_pts = samp_pts.view(1, 1, -1, 2) | |
samp_pts = samp_pts.float() | |
samp_pts = samp_pts.cuda() | |
desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True) | |
desc = desc.data.cpu().numpy().reshape(D, -1) | |
desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :] | |
if pts.shape[1] == 0: | |
continue | |
# print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H) | |
pts[0, :] = pts[0, :] * W / nw | |
pts[1, :] = pts[1, :] * H / nh | |
all_pts.append(np.transpose(pts, [1, 0])) | |
all_descs.append(np.transpose(desc, [1, 0])) | |
all_pts = np.vstack(all_pts) | |
all_descs = np.vstack(all_descs) | |
torch.backends.cudnn.benchmark = old_bm | |
if all_pts.shape[0] == 0: | |
return None, None, None | |
keypoints = all_pts[:, 0:2] | |
scores = all_pts[:, 2] | |
descriptors = all_descs | |
if mask is not None: | |
# cv2.imshow("mask", mask) | |
# cv2.waitKey(0) | |
labels = [] | |
others = [] | |
keypoints_with_labels = [] | |
scores_with_labels = [] | |
descriptors_with_labels = [] | |
keypoints_without_labels = [] | |
scores_without_labels = [] | |
descriptors_without_labels = [] | |
id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0]) | |
# print(img.shape, id_img.shape) | |
for i in range(keypoints.shape[0]): | |
x = keypoints[i, 0] | |
y = keypoints[i, 1] | |
# print("x-y", x, y, int(x), int(y)) | |
gid = id_img[int(y), int(x)] | |
if gid == 0: | |
keypoints_without_labels.append(keypoints[i]) | |
scores_without_labels.append(scores[i]) | |
descriptors_without_labels.append(descriptors[i]) | |
others.append(0) | |
else: | |
keypoints_with_labels.append(keypoints[i]) | |
scores_with_labels.append(scores[i]) | |
descriptors_with_labels.append(descriptors[i]) | |
labels.append(gid) | |
if topK > 0: | |
if topK <= len(keypoints_with_labels): | |
idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK] | |
keypoints = np.array(keypoints_with_labels, float)[idxes] | |
scores = np.array(scores_with_labels, float)[idxes] | |
labels = np.array(labels, np.int32)[idxes] | |
descriptors = np.array(descriptors_with_labels, float)[idxes] | |
elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels): | |
# keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels]) | |
# scores = np.vstack([scorescc_with_labels, scores_without_labels]) | |
# descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels]) | |
# labels = np.vstack([labels, others]) | |
keypoints = keypoints_with_labels | |
scores = scores_with_labels | |
descriptors = descriptors_with_labels | |
for i in range(len(others)): | |
keypoints.append(keypoints_without_labels[i]) | |
scores.append(scores_without_labels[i]) | |
descriptors.append(descriptors_without_labels[i]) | |
labels.append(others[i]) | |
else: | |
n = topK - len(keypoints_with_labels) | |
idxes = np.array(scores_without_labels, float).argsort()[::-1][:n] | |
keypoints = keypoints_with_labels | |
scores = scores_with_labels | |
descriptors = descriptors_with_labels | |
for i in idxes: | |
keypoints.append(keypoints_without_labels[i]) | |
scores.append(scores_without_labels[i]) | |
descriptors.append(descriptors_without_labels[i]) | |
labels.append(others[i]) | |
keypoints = np.array(keypoints, float) | |
descriptors = np.array(descriptors, float) | |
# print(keypoints.shape, descriptors.shape) | |
return {"keypoints": np.array(keypoints, float), | |
"descriptors": np.array(descriptors, float), | |
"scores": np.array(scores, np.float), | |
"labels": np.array(labels, np.int32), | |
} | |
else: | |
# print(topK) | |
if topK > 0: | |
idxes = np.array(scores, dtype=float).argsort()[::-1][:topK] | |
keypoints = np.array(keypoints[idxes], dtype=float) | |
scores = np.array(scores[idxes], dtype=float) | |
descriptors = np.array(descriptors[idxes], dtype=float) | |
keypoints = np.array(keypoints, dtype=float) | |
scores = np.array(scores, dtype=float) | |
descriptors = np.array(descriptors, dtype=float) | |
# print(keypoints.shape, descriptors.shape) | |
return {"keypoints": np.array(keypoints, dtype=float), | |
"descriptors": descriptors, | |
"scores": scores, | |
} | |
def load_sfd2(weight_path): | |
net = ResNet4x(inputdim=3, outdim=128) | |
net.load_state_dict(torch.load(weight_path, map_location='cpu')['state_dict'], strict=True) | |
# print('Load sfd2 from {:s}'.format(weight_path)) | |
return net | |