File size: 6,157 Bytes
4bde5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import pickle
import random

import numpy as np
import pycolmap
from matplotlib import cm

from .utils.io import read_image
from .utils.viz import (
    add_text,
    cm_RdGn,
    plot_images,
    plot_keypoints,
    plot_matches,
)


def visualize_sfm_2d(
    reconstruction,
    image_dir,
    color_by="visibility",
    selected=[],
    n=1,
    seed=0,
    dpi=75,
):
    assert image_dir.exists()
    if not isinstance(reconstruction, pycolmap.Reconstruction):
        reconstruction = pycolmap.Reconstruction(reconstruction)

    if not selected:
        image_ids = reconstruction.reg_image_ids()
        selected = random.Random(seed).sample(image_ids, min(n, len(image_ids)))

    for i in selected:
        image = reconstruction.images[i]
        keypoints = np.array([p.xy for p in image.points2D])
        visible = np.array([p.has_point3D() for p in image.points2D])

        if color_by == "visibility":
            color = [(0, 0, 1) if v else (1, 0, 0) for v in visible]
            text = f"visible: {np.count_nonzero(visible)}/{len(visible)}"
        elif color_by == "track_length":
            tl = np.array(
                [
                    (
                        reconstruction.points3D[p.point3D_id].track.length()
                        if p.has_point3D()
                        else 1
                    )
                    for p in image.points2D
                ]
            )
            max_, med_ = np.max(tl), np.median(tl[tl > 1])
            tl = np.log(tl)
            color = cm.jet(tl / tl.max()).tolist()
            text = f"max/median track length: {max_}/{med_}"
        elif color_by == "depth":
            p3ids = [p.point3D_id for p in image.points2D if p.has_point3D()]
            z = np.array(
                [
                    (image.cam_from_world * reconstruction.points3D[j].xyz)[-1]
                    for j in p3ids
                ]
            )
            z -= z.min()
            color = cm.jet(z / np.percentile(z, 99.9))
            text = f"visible: {np.count_nonzero(visible)}/{len(visible)}"
            keypoints = keypoints[visible]
        else:
            raise NotImplementedError(f"Coloring not implemented: {color_by}.")

        name = image.name
        fig = plot_images([read_image(image_dir / name)], dpi=dpi)
        plot_keypoints([keypoints], colors=[color], ps=4)
        add_text(0, text)
        add_text(0, name, pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom")
    return fig


def visualize_loc(
    results,
    image_dir,
    reconstruction=None,
    db_image_dir=None,
    selected=[],
    n=1,
    seed=0,
    prefix=None,
    **kwargs,
):
    assert image_dir.exists()

    with open(str(results) + "_logs.pkl", "rb") as f:
        logs = pickle.load(f)

    if not selected:
        queries = list(logs["loc"].keys())
        if prefix:
            queries = [q for q in queries if q.startswith(prefix)]
        selected = random.Random(seed).sample(queries, min(n, len(queries)))

    if reconstruction is not None:
        if not isinstance(reconstruction, pycolmap.Reconstruction):
            reconstruction = pycolmap.Reconstruction(reconstruction)

    for qname in selected:
        loc = logs["loc"][qname]
        visualize_loc_from_log(
            image_dir, qname, loc, reconstruction, db_image_dir, **kwargs
        )


def visualize_loc_from_log(
    image_dir,
    query_name,
    loc,
    reconstruction=None,
    db_image_dir=None,
    top_k_db=2,
    dpi=75,
):
    q_image = read_image(image_dir / query_name)
    if loc.get("covisibility_clustering", False):
        # select the first, largest cluster if the localization failed
        loc = loc["log_clusters"][loc["best_cluster"] or 0]

    inliers = np.array(loc["PnP_ret"]["inliers"])
    mkp_q = loc["keypoints_query"]
    n = len(loc["db"])
    if reconstruction is not None:
        # for each pair of query keypoint and its matched 3D point,
        # we need to find its corresponding keypoint in each database image
        # that observes it. We also count the number of inliers in each.
        kp_idxs, kp_to_3D_to_db = loc["keypoint_index_to_db"]
        counts = np.zeros(n)
        dbs_kp_q_db = [[] for _ in range(n)]
        inliers_dbs = [[] for _ in range(n)]
        for i, (inl, (p3D_id, db_idxs)) in enumerate(
            zip(inliers, kp_to_3D_to_db)
        ):
            track = reconstruction.points3D[p3D_id].track
            track = {el.image_id: el.point2D_idx for el in track.elements}
            for db_idx in db_idxs:
                counts[db_idx] += inl
                kp_db = track[loc["db"][db_idx]]
                dbs_kp_q_db[db_idx].append((i, kp_db))
                inliers_dbs[db_idx].append(inl)
    else:
        # for inloc the database keypoints are already in the logs
        assert "keypoints_db" in loc
        assert "indices_db" in loc
        counts = np.array(
            [np.sum(loc["indices_db"][inliers] == i) for i in range(n)]
        )

    # display the database images with the most inlier matches
    db_sort = np.argsort(-counts)
    for db_idx in db_sort[:top_k_db]:
        if reconstruction is not None:
            db = reconstruction.images[loc["db"][db_idx]]
            db_name = db.name
            db_kp_q_db = np.array(dbs_kp_q_db[db_idx])
            kp_q = mkp_q[db_kp_q_db[:, 0]]
            kp_db = np.array([db.points2D[i].xy for i in db_kp_q_db[:, 1]])
            inliers_db = inliers_dbs[db_idx]
        else:
            db_name = loc["db"][db_idx]
            kp_q = mkp_q[loc["indices_db"] == db_idx]
            kp_db = loc["keypoints_db"][loc["indices_db"] == db_idx]
            inliers_db = inliers[loc["indices_db"] == db_idx]

        db_image = read_image((db_image_dir or image_dir) / db_name)
        color = cm_RdGn(inliers_db).tolist()
        text = f"inliers: {sum(inliers_db)}/{len(inliers_db)}"

        plot_images([q_image, db_image], dpi=dpi)
        plot_matches(kp_q, kp_db, color, a=0.1)
        add_text(0, text)
        opts = dict(pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom")
        add_text(0, query_name, **opts)
        add_text(1, db_name, **opts)