File size: 37,441 Bytes
4bde5d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 |
import os
import pickle
import random
import shutil
import sys
import time
import warnings
from itertools import combinations
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import cv2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import poselib
import psutil
from PIL import Image
sys.path.append(str(Path(__file__).parents[1]))
from hloc import (
DEVICE,
extract_features,
extractors,
logger,
match_dense,
match_features,
matchers,
)
from hloc.utils.base_model import dynamic_load
from ui.viz import display_keypoints, display_matches, fig2im, plot_images
warnings.simplefilter("ignore")
ROOT = Path(__file__).parent.parent
# some default values
DEFAULT_SETTING_THRESHOLD = 0.1
DEFAULT_SETTING_MAX_FEATURES = 2000
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
DEFAULT_ENABLE_RANSAC = True
DEFAULT_RANSAC_METHOD = "CV2_USAC_MAGSAC"
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_MATCHING_THRESHOLD = 0.2
DEFAULT_SETTING_GEOMETRY = "Homography"
GRADIO_VERSION = gr.__version__.split(".")[0]
MATCHER_ZOO = None
class ModelCache:
def __init__(self, max_memory_size: int = 8):
self.max_memory_size = max_memory_size
self.current_memory_size = 0
self.model_dict = {}
self.model_timestamps = []
def cache_model(self, model_key, model_loader_func, model_conf):
if model_key in self.model_dict:
self.model_timestamps.remove(model_key)
self.model_timestamps.append(model_key)
logger.info(f"Load cached {model_key}")
return self.model_dict[model_key]
model = self._load_model_from_disk(model_loader_func, model_conf)
while self._calculate_model_memory() > self.max_memory_size:
if len(self.model_timestamps) == 0:
logger.warn(
"RAM: {}GB, MAX RAM: {}GB".format(
self._calculate_model_memory(), self.max_memory_size
)
)
break
oldest_model_key = self.model_timestamps.pop(0)
self.current_memory_size = self._calculate_model_memory()
logger.info(f"Del cached {oldest_model_key}")
del self.model_dict[oldest_model_key]
self.model_dict[model_key] = model
self.model_timestamps.append(model_key)
self.print_memory_usage()
logger.info(f"Total cached {list(self.model_dict.keys())}")
return model
def _load_model_from_disk(self, model_loader_func, model_conf):
return model_loader_func(model_conf)
def _calculate_model_memory(self, verbose=False):
host_colocation = int(os.environ.get("HOST_COLOCATION", "1"))
vm = psutil.virtual_memory()
du = shutil.disk_usage(".")
if verbose:
logger.info(
f"RAM: {vm.used / 1e9:.1f}/{vm.total / host_colocation / 1e9:.1f}GB"
)
logger.info(
f"DISK: {du.used / 1e9:.1f}/{du.total / host_colocation / 1e9:.1f}GB"
)
return vm.used / 1e9
def print_memory_usage(self):
self._calculate_model_memory(verbose=True)
model_cache = ModelCache()
def load_config(config_name: str) -> Dict[str, Any]:
"""
Load a YAML configuration file.
Args:
config_name: The path to the YAML configuration file.
Returns:
The configuration dictionary, with string keys and arbitrary values.
"""
import yaml
with open(config_name, "r") as stream:
try:
config: Dict[str, Any] = yaml.safe_load(stream)
except yaml.YAMLError as exc:
logger.error(exc)
return config
def get_matcher_zoo(
matcher_zoo: Dict[str, Dict[str, Union[str, bool]]]
) -> Dict[str, Dict[str, Union[Callable, bool]]]:
"""
Restore matcher configurations from a dictionary.
Args:
matcher_zoo: A dictionary with the matcher configurations,
where the configuration is a dictionary as loaded from a YAML file.
Returns:
A dictionary with the matcher configurations, where the configuration is
a function or a function instead of a string.
"""
matcher_zoo_restored = {}
for k, v in matcher_zoo.items():
matcher_zoo_restored[k] = parse_match_config(v)
return matcher_zoo_restored
def parse_match_config(conf):
if conf["dense"]:
return {
"matcher": match_dense.confs.get(conf["matcher"]),
"dense": True,
}
else:
return {
"feature": extract_features.confs.get(conf["feature"]),
"matcher": match_features.confs.get(conf["matcher"]),
"dense": False,
}
def get_model(match_conf: Dict[str, Any]):
"""
Load a matcher model from the provided configuration.
Args:
match_conf: A dictionary containing the model configuration.
Returns:
A matcher model instance.
"""
Model = dynamic_load(matchers, match_conf["model"]["name"])
model = Model(match_conf["model"]).eval().to(DEVICE)
return model
def get_feature_model(conf: Dict[str, Dict[str, Any]]):
"""
Load a feature extraction model from the provided configuration.
Args:
conf: A dictionary containing the model configuration.
Returns:
A feature extraction model instance.
"""
Model = dynamic_load(extractors, conf["model"]["name"])
model = Model(conf["model"]).eval().to(DEVICE)
return model
def gen_examples():
random.seed(1)
example_matchers = [
"disk+lightglue",
"xfeat(sparse)",
"dedode",
"loftr",
"disk",
"RoMa",
"d2net",
"aspanformer",
"topicfm",
"superpoint+superglue",
"superpoint+lightglue",
"superpoint+mnn",
"disk",
]
def distribute_elements(A, B):
new_B = np.array(B, copy=True).flatten()
np.random.shuffle(new_B)
new_B = np.resize(new_B, len(A))
np.random.shuffle(new_B)
return new_B.tolist()
# normal examples
def gen_images_pairs(count: int = 5):
path = str(ROOT / "datasets/sacre_coeur/mapping")
imgs_list = [
os.path.join(path, file)
for file in os.listdir(path)
if file.lower().endswith((".jpg", ".jpeg", ".png"))
]
pairs = list(combinations(imgs_list, 2))
if len(pairs) < count:
count = len(pairs)
selected = random.sample(range(len(pairs)), count)
return [pairs[i] for i in selected]
# rotated examples
def gen_rot_image_pairs(count: int = 5):
path = ROOT / "datasets/sacre_coeur/mapping"
path_rot = ROOT / "datasets/sacre_coeur/mapping_rot"
rot_list = [45, 180, 90, 225, 270]
pairs = []
for file in os.listdir(path):
if file.lower().endswith((".jpg", ".jpeg", ".png")):
for rot in rot_list:
file_rot = "{}_rot{}.jpg".format(Path(file).stem, rot)
if (path_rot / file_rot).exists():
pairs.append(
[
path / file,
path_rot / file_rot,
]
)
if len(pairs) < count:
count = len(pairs)
selected = random.sample(range(len(pairs)), count)
return [pairs[i] for i in selected]
def gen_scale_image_pairs(count: int = 5):
path = ROOT / "datasets/sacre_coeur/mapping"
path_scale = ROOT / "datasets/sacre_coeur/mapping_scale"
scale_list = [0.3, 0.5]
pairs = []
for file in os.listdir(path):
if file.lower().endswith((".jpg", ".jpeg", ".png")):
for scale in scale_list:
file_scale = "{}_scale{}.jpg".format(Path(file).stem, scale)
if (path_scale / file_scale).exists():
pairs.append(
[
path / file,
path_scale / file_scale,
]
)
if len(pairs) < count:
count = len(pairs)
selected = random.sample(range(len(pairs)), count)
return [pairs[i] for i in selected]
# extramely hard examples
def gen_image_pairs_wxbs(count: int = None):
prefix = "datasets/wxbs_benchmark/.WxBS/v1.1"
wxbs_path = ROOT / prefix
pairs = []
for catg in os.listdir(wxbs_path):
catg_path = wxbs_path / catg
if not catg_path.is_dir():
continue
for scene in os.listdir(catg_path):
scene_path = catg_path / scene
if not scene_path.is_dir():
continue
img1_path = scene_path / "01.png"
img2_path = scene_path / "02.png"
if img1_path.exists() and img2_path.exists():
pairs.append([str(img1_path), str(img2_path)])
return pairs
# image pair path
pairs = gen_images_pairs()
pairs += gen_rot_image_pairs()
pairs += gen_scale_image_pairs()
pairs += gen_image_pairs_wxbs()
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
ransac_method = DEFAULT_RANSAC_METHOD
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
input_lists = []
dist_examples = distribute_elements(pairs, example_matchers)
for pair, mt in zip(pairs, dist_examples):
input_lists.append(
[
pair[0],
pair[1],
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
mt,
# enable_ransac,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
]
)
return input_lists
def set_null_pred(feature_type: str, pred: dict):
if feature_type == "KEYPOINT":
pred["mmkeypoints0_orig"] = np.array([])
pred["mmkeypoints1_orig"] = np.array([])
pred["mmconf"] = np.array([])
elif feature_type == "LINE":
pred["mline_keypoints0_orig"] = np.array([])
pred["mline_keypoints1_orig"] = np.array([])
pred["H"] = None
pred["geom_info"] = {}
return pred
def _filter_matches_opencv(
kp0: np.ndarray,
kp1: np.ndarray,
method: int = cv2.RANSAC,
reproj_threshold: float = 3.0,
confidence: float = 0.99,
max_iter: int = 2000,
geometry_type: str = "Homography",
) -> Tuple[np.ndarray, np.ndarray]:
"""
Filters matches between two sets of keypoints using OpenCV's findHomography.
Args:
kp0 (np.ndarray): Array of keypoints from the first image.
kp1 (np.ndarray): Array of keypoints from the second image.
method (int, optional): RANSAC method. Defaults to "cv2.RANSAC".
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.0.
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
Returns:
Tuple[np.ndarray, np.ndarray]: Homography matrix and mask.
"""
if geometry_type == "Homography":
M, mask = cv2.findHomography(
kp0,
kp1,
method=method,
ransacReprojThreshold=reproj_threshold,
confidence=confidence,
maxIters=max_iter,
)
elif geometry_type == "Fundamental":
M, mask = cv2.findFundamentalMat(
kp0,
kp1,
method=method,
ransacReprojThreshold=reproj_threshold,
confidence=confidence,
maxIters=max_iter,
)
mask = np.array(mask.ravel().astype("bool"), dtype="bool")
return M, mask
def _filter_matches_poselib(
kp0: np.ndarray,
kp1: np.ndarray,
method: int = None, # not used
reproj_threshold: float = 3,
confidence: float = 0.99,
max_iter: int = 2000,
geometry_type: str = "Homography",
) -> dict:
"""
Filters matches between two sets of keypoints using the poselib library.
Args:
kp0 (np.ndarray): Array of keypoints from the first image.
kp1 (np.ndarray): Array of keypoints from the second image.
method (str, optional): RANSAC method. Defaults to "RANSAC".
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
Returns:
dict: Information about the homography estimation.
"""
ransac_options = {
"max_iterations": max_iter,
# "min_iterations": min_iter,
"success_prob": confidence,
"max_reproj_error": reproj_threshold,
# "progressive_sampling": args.sampler.lower() == 'prosac'
}
if geometry_type == "Homography":
M, info = poselib.estimate_homography(kp0, kp1, ransac_options)
elif geometry_type == "Fundamental":
M, info = poselib.estimate_fundamental(kp0, kp1, ransac_options)
else:
raise NotImplementedError
return M, np.array(info["inliers"])
def proc_ransac_matches(
mkpts0: np.ndarray,
mkpts1: np.ndarray,
ransac_method: str = DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold: float = 3.0,
ransac_confidence: float = 0.99,
ransac_max_iter: int = 2000,
geometry_type: str = "Homography",
):
if ransac_method.startswith("CV2"):
logger.info(
f"ransac_method: {ransac_method}, geometry_type: {geometry_type}"
)
return _filter_matches_opencv(
mkpts0,
mkpts1,
ransac_zoo[ransac_method],
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
geometry_type,
)
elif ransac_method.startswith("POSELIB"):
logger.info(
f"ransac_method: {ransac_method}, geometry_type: {geometry_type}"
)
return _filter_matches_poselib(
mkpts0,
mkpts1,
None,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
geometry_type,
)
else:
raise NotImplementedError
def filter_matches(
pred: Dict[str, Any],
ransac_method: str = DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
ransac_estimator: str = None,
):
"""
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
If lines are available, filter by lines. If both keypoints and lines are
available, filter by keypoints.
Args:
pred (Dict[str, Any]): dict of matches, including original keypoints.
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
Returns:
Dict[str, Any]: filtered matches.
"""
mkpts0: Optional[np.ndarray] = None
mkpts1: Optional[np.ndarray] = None
feature_type: Optional[str] = None
if "mkeypoints0_orig" in pred.keys() and "mkeypoints1_orig" in pred.keys():
mkpts0 = pred["mkeypoints0_orig"]
mkpts1 = pred["mkeypoints1_orig"]
feature_type = "KEYPOINT"
elif (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
feature_type = "LINE"
else:
return set_null_pred(feature_type, pred)
if mkpts0 is None or mkpts0 is None:
return set_null_pred(feature_type, pred)
if ransac_method not in ransac_zoo.keys():
ransac_method = DEFAULT_RANSAC_METHOD
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
return set_null_pred(feature_type, pred)
geom_info = compute_geometry(
pred,
ransac_method=ransac_method,
ransac_reproj_threshold=ransac_reproj_threshold,
ransac_confidence=ransac_confidence,
ransac_max_iter=ransac_max_iter,
)
if "Homography" in geom_info.keys():
mask = geom_info["mask_h"]
if feature_type == "KEYPOINT":
pred["mmkeypoints0_orig"] = mkpts0[mask]
pred["mmkeypoints1_orig"] = mkpts1[mask]
pred["mmconf"] = pred["mconf"][mask]
elif feature_type == "LINE":
pred["mline_keypoints0_orig"] = mkpts0[mask]
pred["mline_keypoints1_orig"] = mkpts1[mask]
pred["H"] = np.array(geom_info["Homography"])
else:
set_null_pred(feature_type, pred)
# do not show mask
geom_info.pop("mask_h", None)
geom_info.pop("mask_f", None)
pred["geom_info"] = geom_info
return pred
def compute_geometry(
pred: Dict[str, Any],
ransac_method: str = DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
) -> Dict[str, List[float]]:
"""
Compute geometric information of matches, including Fundamental matrix,
Homography matrix, and rectification matrices (if available).
Args:
pred (Dict[str, Any]): dict of matches, including original keypoints.
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
Returns:
Dict[str, List[float]]: geometric information in form of a dict.
"""
mkpts0: Optional[np.ndarray] = None
mkpts1: Optional[np.ndarray] = None
if "mkeypoints0_orig" in pred.keys() and "mkeypoints1_orig" in pred.keys():
mkpts0 = pred["mkeypoints0_orig"]
mkpts1 = pred["mkeypoints1_orig"]
elif (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
if mkpts0 is not None and mkpts1 is not None:
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
return {}
geo_info: Dict[str, List[float]] = {}
F, mask_f = proc_ransac_matches(
mkpts0,
mkpts1,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
geometry_type="Fundamental",
)
if F is not None:
geo_info["Fundamental"] = F.tolist()
geo_info["mask_f"] = mask_f
H, mask_h = proc_ransac_matches(
mkpts1,
mkpts0,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
geometry_type="Homography",
)
h0, w0, _ = pred["image0_orig"].shape
if H is not None:
geo_info["Homography"] = H.tolist()
geo_info["mask_h"] = mask_h
try:
_, H1, H2 = cv2.stereoRectifyUncalibrated(
mkpts0.reshape(-1, 2),
mkpts1.reshape(-1, 2),
F,
imgSize=(w0, h0),
)
geo_info["H1"] = H1.tolist()
geo_info["H2"] = H2.tolist()
except cv2.error as e:
logger.error(
f"StereoRectifyUncalibrated failed, skip! error: {e}"
)
return geo_info
else:
return {}
def wrap_images(
img0: np.ndarray,
img1: np.ndarray,
geo_info: Optional[Dict[str, List[float]]],
geom_type: str,
) -> Tuple[Optional[str], Optional[Dict[str, List[float]]]]:
"""
Wraps the images based on the geometric transformation used to align them.
Args:
img0: numpy array representing the first image.
img1: numpy array representing the second image.
geo_info: dictionary containing the geometric transformation information.
geom_type: type of geometric transformation used to align the images.
Returns:
A tuple containing a base64 encoded image string and a dictionary with the transformation matrix.
"""
h0, w0, _ = img0.shape
h1, w1, _ = img1.shape
if geo_info is not None and len(geo_info) != 0:
rectified_image0 = img0
rectified_image1 = None
if "Homography" not in geo_info:
logger.warning(f"{geom_type} not exist, maybe too less matches")
return None, None
H = np.array(geo_info["Homography"])
title: List[str] = []
if geom_type == "Homography":
rectified_image1 = cv2.warpPerspective(img1, H, (w0, h0))
title = ["Image 0", "Image 1 - warped"]
elif geom_type == "Fundamental":
if geom_type not in geo_info:
logger.warning(f"{geom_type} not exist, maybe too less matches")
return None, None
else:
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
rectified_image0 = cv2.warpPerspective(img0, H1, (w0, h0))
rectified_image1 = cv2.warpPerspective(img1, H2, (w1, h1))
title = ["Image 0 - warped", "Image 1 - warped"]
else:
print("Error: Unknown geometry type")
fig = plot_images(
[rectified_image0.squeeze(), rectified_image1.squeeze()],
title,
dpi=300,
)
return fig2im(fig), rectified_image1
else:
return None, None
def generate_warp_images(
input_image0: np.ndarray,
input_image1: np.ndarray,
matches_info: Dict[str, Any],
choice: str,
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
"""
Changes the estimate of the geometric transformation used to align the images.
Args:
input_image0: First input image.
input_image1: Second input image.
matches_info: Dictionary containing information about the matches.
choice: Type of geometric transformation to use ('Homography' or 'Fundamental') or 'No' to disable.
Returns:
A tuple containing the updated images and the warpped images.
"""
if (
matches_info is None
or len(matches_info) < 1
or "geom_info" not in matches_info.keys()
):
return None, None
geom_info = matches_info["geom_info"]
warped_image = None
if choice != "No":
wrapped_image_pair, warped_image = wrap_images(
input_image0, input_image1, geom_info, choice
)
return wrapped_image_pair, warped_image
else:
return None, None
def send_to_match(state_cache: Dict[str, Any]):
"""
Send the state cache to the match function.
Args:
state_cache (Dict[str, Any]): Current state of the app.
Returns:
None
"""
if state_cache:
return (
state_cache["image0_orig"],
state_cache["wrapped_image"],
)
else:
return None, None
def run_ransac(
state_cache: Dict[str, Any],
choice_geometry_type: str,
ransac_method: str = DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold: int = DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
) -> Tuple[Optional[np.ndarray], Optional[Dict[str, int]]]:
"""
Run RANSAC matches and return the output images and the number of matches.
Args:
state_cache (Dict[str, Any]): Current state of the app, including the matches.
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
ransac_reproj_threshold (int, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
Returns:
Tuple[Optional[np.ndarray], Optional[Dict[str, int]]]: Tuple containing the output images and the number of matches.
"""
if not state_cache:
logger.info("Run Match first before Rerun RANSAC")
gr.Warning("Run Match first before Rerun RANSAC")
return None, None
t1 = time.time()
logger.info(
f"Run RANSAC matches using: {ransac_method} with threshold: {ransac_reproj_threshold}"
)
logger.info(
f"Run RANSAC matches using: {ransac_confidence} with iter: {ransac_max_iter}"
)
# if enable_ransac:
filter_matches(
state_cache,
ransac_method=ransac_method,
ransac_reproj_threshold=ransac_reproj_threshold,
ransac_confidence=ransac_confidence,
ransac_max_iter=ransac_max_iter,
)
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
t1 = time.time()
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
state_cache, titles=titles, tag="KPTS_RANSAC"
)
logger.info(f"Display matches done using: {time.time()-t1:.3f}s")
t1 = time.time()
# compute warp images
output_wrapped, warped_image = generate_warp_images(
state_cache["image0_orig"],
state_cache["image1_orig"],
state_cache,
choice_geometry_type,
)
plt.close("all")
num_matches_raw = state_cache["num_matches_raw"]
state_cache["wrapped_image"] = warped_image
# tmp_state_cache = tempfile.NamedTemporaryFile(suffix='.pkl', delete=False)
tmp_state_cache = "output.pkl"
with open(tmp_state_cache, "wb") as f:
pickle.dump(state_cache, f)
logger.info("Dump results done!")
return (
output_matches_ransac,
{
"num_matches_raw": num_matches_raw,
"num_matches_ransac": num_matches_ransac,
},
output_wrapped,
tmp_state_cache,
)
def run_matching(
image0: np.ndarray,
image1: np.ndarray,
match_threshold: float,
extract_max_keypoints: int,
keypoint_threshold: float,
key: str,
ransac_method: str = DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold: int = DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
choice_geometry_type: str = DEFAULT_SETTING_GEOMETRY,
matcher_zoo: Dict[str, Any] = None,
force_resize: bool = False,
image_width: int = 640,
image_height: int = 480,
use_cached_model: bool = False,
) -> Tuple[
np.ndarray,
np.ndarray,
np.ndarray,
Dict[str, int],
Dict[str, Dict[str, Any]],
Dict[str, Dict[str, float]],
np.ndarray,
]:
"""Match two images using the given parameters.
Args:
image0 (np.ndarray): RGB image 0.
image1 (np.ndarray): RGB image 1.
match_threshold (float): match threshold.
extract_max_keypoints (int): number of keypoints to extract.
keypoint_threshold (float): keypoint threshold.
key (str): key of the model to use.
ransac_method (str, optional): RANSAC method to use.
ransac_reproj_threshold (int, optional): RANSAC reprojection threshold.
ransac_confidence (float, optional): RANSAC confidence level.
ransac_max_iter (int, optional): RANSAC maximum number of iterations.
choice_geometry_type (str, optional): setting of geometry estimation.
matcher_zoo (Dict[str, Any], optional): matcher zoo. Defaults to None.
force_resize (bool, optional): force resize. Defaults to False.
image_width (int, optional): image width. Defaults to 640.
image_height (int, optional): image height. Defaults to 480.
use_cached_model (bool, optional): use cached model. Defaults to False.
Returns:
tuple:
- output_keypoints (np.ndarray): image with keypoints.
- output_matches_raw (np.ndarray): image with raw matches.
- output_matches_ransac (np.ndarray): image with RANSAC matches.
- num_matches (Dict[str, int]): number of raw and RANSAC matches.
- configs (Dict[str, Dict[str, Any]]): match and feature extraction configs.
- geom_info (Dict[str, Dict[str, float]]): geometry information.
- output_wrapped (np.ndarray): wrapped images.
"""
# image0 and image1 is RGB mode
if image0 is None or image1 is None:
logger.error(
"Error: No images found! Please upload two images or select an example."
)
raise gr.Error(
"Error: No images found! Please upload two images or select an example."
)
# init output
output_keypoints = None
output_matches_raw = None
output_matches_ransac = None
# super slow!
if "roma" in key.lower() and DEVICE == "cpu":
gr.Info(
f"Success! Please be patient and allow for about 2-3 minutes."
f" Due to CPU inference, {key} is quiet slow."
)
t0 = time.time()
model = matcher_zoo[key]
match_conf = model["matcher"]
# update match config
match_conf["model"]["match_threshold"] = match_threshold
match_conf["model"]["max_keypoints"] = extract_max_keypoints
cache_key = "{}_{}".format(key, match_conf["model"]["name"])
if use_cached_model:
# because of the model cache, we need to update the config
matcher = model_cache.cache_model(cache_key, get_model, match_conf)
matcher.conf["max_keypoints"] = extract_max_keypoints
matcher.conf["match_threshold"] = match_threshold
logger.info(f"Loaded cached model {cache_key}")
else:
matcher = get_model(match_conf)
logger.info(f"Loading model using: {time.time()-t0:.3f}s")
t1 = time.time()
if model["dense"]:
if not match_conf["preprocessing"].get("force_resize", False):
match_conf["preprocessing"]["force_resize"] = force_resize
else:
logger.info("preprocessing is already resized")
if force_resize:
match_conf["preprocessing"]["height"] = image_height
match_conf["preprocessing"]["width"] = image_width
logger.info(f"Force resize to {image_width}x{image_height}")
pred = match_dense.match_images(
matcher, image0, image1, match_conf["preprocessing"], device=DEVICE
)
del matcher
extract_conf = None
else:
extract_conf = model["feature"]
# update extract config
extract_conf["model"]["max_keypoints"] = extract_max_keypoints
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
cache_key = "{}_{}".format(key, extract_conf["model"]["name"])
if use_cached_model:
extractor = model_cache.cache_model(
cache_key, get_feature_model, extract_conf
)
# because of the model cache, we need to update the config
extractor.conf["max_keypoints"] = extract_max_keypoints
extractor.conf["keypoint_threshold"] = keypoint_threshold
logger.info(f"Loaded cached model {cache_key}")
else:
extractor = get_feature_model(extract_conf)
if not extract_conf["preprocessing"].get("force_resize", False):
extract_conf["preprocessing"]["force_resize"] = force_resize
else:
logger.info("preprocessing is already resized")
if force_resize:
extract_conf["preprocessing"]["height"] = image_height
extract_conf["preprocessing"]["width"] = image_width
logger.info(f"Force resize to {image_width}x{image_height}")
pred0 = extract_features.extract(
extractor, image0, extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
extractor, image1, extract_conf["preprocessing"]
)
pred = match_features.match_images(matcher, pred0, pred1)
del extractor
# gr.Info(
# f"Matching images done using: {time.time()-t1:.3f}s",
# )
logger.info(f"Matching images done using: {time.time()-t1:.3f}s")
t1 = time.time()
# plot images with keypoints
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
output_keypoints = display_keypoints(pred, titles=titles)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)
# if enable_ransac:
filter_matches(
pred,
ransac_method=ransac_method,
ransac_reproj_threshold=ransac_reproj_threshold,
ransac_confidence=ransac_confidence,
ransac_max_iter=ransac_max_iter,
)
# gr.Info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
t1 = time.time()
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles, tag="KPTS_RANSAC"
)
# gr.Info(f"Display matches done using: {time.time()-t1:.3f}s")
logger.info(f"Display matches done using: {time.time()-t1:.3f}s")
t1 = time.time()
# plot wrapped images
output_wrapped, warped_image = generate_warp_images(
pred["image0_orig"],
pred["image1_orig"],
pred,
choice_geometry_type,
)
plt.close("all")
# gr.Info(f"In summary, total time: {time.time()-t0:.3f}s")
logger.info(f"TOTAL time: {time.time()-t0:.3f}s")
state_cache = pred
state_cache["num_matches_raw"] = num_matches_raw
state_cache["num_matches_ransac"] = num_matches_ransac
state_cache["wrapped_image"] = warped_image
# tmp_state_cache = tempfile.NamedTemporaryFile(suffix='.pkl', delete=False)
tmp_state_cache = "output.pkl"
with open(tmp_state_cache, "wb") as f:
pickle.dump(state_cache, f)
logger.info("Dump results done!")
return (
output_keypoints,
output_matches_raw,
output_matches_ransac,
{
"num_raw_matches": num_matches_raw,
"num_ransac_matches": num_matches_ransac,
},
{
"match_conf": match_conf,
"extractor_conf": extract_conf,
},
{
"geom_info": pred.get("geom_info", {}),
},
output_wrapped,
state_cache,
tmp_state_cache,
)
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
"POSELIB": "LO-RANSAC",
"CV2_RANSAC": cv2.RANSAC,
"CV2_USAC_MAGSAC": cv2.USAC_MAGSAC,
"CV2_USAC_DEFAULT": cv2.USAC_DEFAULT,
"CV2_USAC_FM_8PTS": cv2.USAC_FM_8PTS,
"CV2_USAC_PROSAC": cv2.USAC_PROSAC,
"CV2_USAC_FAST": cv2.USAC_FAST,
"CV2_USAC_ACCURATE": cv2.USAC_ACCURATE,
"CV2_USAC_PARALLEL": cv2.USAC_PARALLEL,
}
def rotate_image(input_path, degrees, output_path):
img = Image.open(input_path)
img_rotated = img.rotate(-degrees)
img_rotated.save(output_path)
def scale_image(input_path, scale_factor, output_path):
img = Image.open(input_path)
width, height = img.size
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
new_img = Image.new("RGB", (width, height), (0, 0, 0))
img_resized = img.resize((new_width, new_height))
position = ((width - new_width) // 2, (height - new_height) // 2)
new_img.paste(img_resized, position)
new_img.save(output_path)
|