|
import argparse |
|
import collections.abc as collections |
|
import pprint |
|
from pathlib import Path |
|
from types import SimpleNamespace |
|
from typing import Dict, List, Optional, Union |
|
|
|
import cv2 |
|
import h5py |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torchvision.transforms.functional as F |
|
from tqdm import tqdm |
|
|
|
from . import extractors, logger |
|
from .utils.base_model import dynamic_load |
|
from .utils.io import list_h5_names, read_image |
|
from .utils.parsers import parse_image_lists |
|
|
|
""" |
|
A set of standard configurations that can be directly selected from the command |
|
line using their name. Each is a dictionary with the following entries: |
|
- output: the name of the feature file that will be generated. |
|
- model: the model configuration, as passed to a feature extractor. |
|
- preprocessing: how to preprocess the images read from disk. |
|
""" |
|
confs = { |
|
"superpoint_aachen": { |
|
"output": "feats-superpoint-n4096-r1024", |
|
"model": { |
|
"name": "superpoint", |
|
"nms_radius": 3, |
|
"max_keypoints": 4096, |
|
"keypoint_threshold": 0.005, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
|
|
|
|
"superpoint_max": { |
|
"output": "feats-superpoint-n4096-rmax1600", |
|
"model": { |
|
"name": "superpoint", |
|
"nms_radius": 3, |
|
"max_keypoints": 4096, |
|
"keypoint_threshold": 0.005, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"superpoint_inloc": { |
|
"output": "feats-superpoint-n4096-r1600", |
|
"model": { |
|
"name": "superpoint", |
|
"nms_radius": 4, |
|
"max_keypoints": 4096, |
|
"keypoint_threshold": 0.005, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"r2d2": { |
|
"output": "feats-r2d2-n5000-r1024", |
|
"model": { |
|
"name": "r2d2", |
|
"max_keypoints": 5000, |
|
"reliability_threshold": 0.7, |
|
"repetability_threshold": 0.7, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"force_resize": True, |
|
"resize_max": 1024, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"d2net-ss": { |
|
"output": "feats-d2net-ss-n5000-r1600", |
|
"model": { |
|
"name": "d2net", |
|
"multiscale": False, |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"d2net-ms": { |
|
"output": "feats-d2net-ms-n5000-r1600", |
|
"model": { |
|
"name": "d2net", |
|
"multiscale": True, |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"rord": { |
|
"output": "feats-rord-ss-n5000-r1600", |
|
"model": { |
|
"name": "rord", |
|
"multiscale": False, |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"rootsift": { |
|
"output": "feats-rootsift-n5000-r1600", |
|
"model": { |
|
"name": "dog", |
|
"descriptor": "rootsift", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"sift": { |
|
"output": "feats-sift-n5000-r1600", |
|
"model": { |
|
"name": "sift", |
|
"rootsift": True, |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"sosnet": { |
|
"output": "feats-sosnet-n5000-r1600", |
|
"model": { |
|
"name": "dog", |
|
"descriptor": "sosnet", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"hardnet": { |
|
"output": "feats-hardnet-n5000-r1600", |
|
"model": { |
|
"name": "dog", |
|
"descriptor": "hardnet", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"disk": { |
|
"output": "feats-disk-n5000-r1600", |
|
"model": { |
|
"name": "disk", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"xfeat": { |
|
"output": "feats-xfeat-n5000-r1600", |
|
"model": { |
|
"name": "xfeat", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"alike": { |
|
"output": "feats-alike-n5000-r1600", |
|
"model": { |
|
"name": "alike", |
|
"max_keypoints": 5000, |
|
"use_relu": True, |
|
"multiscale": False, |
|
"detection_threshold": 0.5, |
|
"top_k": -1, |
|
"sub_pixel": False, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"lanet": { |
|
"output": "feats-lanet-n5000-r1600", |
|
"model": { |
|
"name": "lanet", |
|
"keypoint_threshold": 0.1, |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"resize_max": 1600, |
|
"force_resize": True, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"darkfeat": { |
|
"output": "feats-darkfeat-n5000-r1600", |
|
"model": { |
|
"name": "darkfeat", |
|
"max_keypoints": 5000, |
|
"reliability_threshold": 0.7, |
|
"repetability_threshold": 0.7, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"dedode": { |
|
"output": "feats-dedode-n5000-r1600", |
|
"model": { |
|
"name": "dedode", |
|
"max_keypoints": 5000, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 768, |
|
"height": 768, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"example": { |
|
"output": "feats-example-n2000-r1024", |
|
"model": { |
|
"name": "example", |
|
"keypoint_threshold": 0.1, |
|
"max_keypoints": 2000, |
|
"model_name": "model.pth", |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"force_resize": True, |
|
"resize_max": 1024, |
|
"width": 768, |
|
"height": 768, |
|
"dfactor": 8, |
|
}, |
|
}, |
|
"sfd2": { |
|
"output": "feats-sfd2-n4096-r1600", |
|
"model": { |
|
"name": "sfd2", |
|
"max_keypoints": 4096, |
|
}, |
|
"preprocessing": { |
|
"grayscale": False, |
|
"force_resize": True, |
|
"resize_max": 1600, |
|
"width": 640, |
|
"height": 480, |
|
"conf_th": 0.001, |
|
"multiscale": False, |
|
"scales": [1.0], |
|
}, |
|
}, |
|
|
|
"dir": { |
|
"output": "global-feats-dir", |
|
"model": {"name": "dir"}, |
|
"preprocessing": {"resize_max": 1024}, |
|
}, |
|
"netvlad": { |
|
"output": "global-feats-netvlad", |
|
"model": {"name": "netvlad"}, |
|
"preprocessing": {"resize_max": 1024}, |
|
}, |
|
"openibl": { |
|
"output": "global-feats-openibl", |
|
"model": {"name": "openibl"}, |
|
"preprocessing": {"resize_max": 1024}, |
|
}, |
|
"cosplace": { |
|
"output": "global-feats-cosplace", |
|
"model": {"name": "cosplace"}, |
|
"preprocessing": {"resize_max": 1024}, |
|
}, |
|
"eigenplaces": { |
|
"output": "global-feats-eigenplaces", |
|
"model": {"name": "eigenplaces"}, |
|
"preprocessing": {"resize_max": 1024}, |
|
}, |
|
} |
|
|
|
|
|
def resize_image(image, size, interp): |
|
if interp.startswith("cv2_"): |
|
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper()) |
|
h, w = image.shape[:2] |
|
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]): |
|
interp = cv2.INTER_LINEAR |
|
resized = cv2.resize(image, size, interpolation=interp) |
|
elif interp.startswith("pil_"): |
|
interp = getattr(PIL.Image, interp[len("pil_") :].upper()) |
|
resized = PIL.Image.fromarray(image.astype(np.uint8)) |
|
resized = resized.resize(size, resample=interp) |
|
resized = np.asarray(resized, dtype=image.dtype) |
|
else: |
|
raise ValueError(f"Unknown interpolation {interp}.") |
|
return resized |
|
|
|
|
|
class ImageDataset(torch.utils.data.Dataset): |
|
default_conf = { |
|
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"], |
|
"grayscale": False, |
|
"resize_max": None, |
|
"force_resize": False, |
|
"interpolation": "cv2_area", |
|
} |
|
|
|
def __init__(self, root, conf, paths=None): |
|
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf}) |
|
self.root = root |
|
|
|
if paths is None: |
|
paths = [] |
|
for g in conf.globs: |
|
paths += list(Path(root).glob("**/" + g)) |
|
if len(paths) == 0: |
|
raise ValueError(f"Could not find any image in root: {root}.") |
|
paths = sorted(list(set(paths))) |
|
self.names = [i.relative_to(root).as_posix() for i in paths] |
|
logger.info(f"Found {len(self.names)} images in root {root}.") |
|
else: |
|
if isinstance(paths, (Path, str)): |
|
self.names = parse_image_lists(paths) |
|
elif isinstance(paths, collections.Iterable): |
|
self.names = [ |
|
p.as_posix() if isinstance(p, Path) else p for p in paths |
|
] |
|
else: |
|
raise ValueError(f"Unknown format for path argument {paths}.") |
|
|
|
for name in self.names: |
|
if not (root / name).exists(): |
|
raise ValueError( |
|
f"Image {name} does not exists in root: {root}." |
|
) |
|
|
|
def __getitem__(self, idx): |
|
name = self.names[idx] |
|
image = read_image(self.root / name, self.conf.grayscale) |
|
image = image.astype(np.float32) |
|
size = image.shape[:2][::-1] |
|
|
|
if self.conf.resize_max and ( |
|
self.conf.force_resize or max(size) > self.conf.resize_max |
|
): |
|
scale = self.conf.resize_max / max(size) |
|
size_new = tuple(int(round(x * scale)) for x in size) |
|
image = resize_image(image, size_new, self.conf.interpolation) |
|
|
|
if self.conf.grayscale: |
|
image = image[None] |
|
else: |
|
image = image.transpose((2, 0, 1)) |
|
image = image / 255.0 |
|
|
|
data = { |
|
"image": image, |
|
"original_size": np.array(size), |
|
} |
|
return data |
|
|
|
def __len__(self): |
|
return len(self.names) |
|
|
|
|
|
def extract(model, image_0, conf): |
|
default_conf = { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"cache_images": False, |
|
"force_resize": False, |
|
"width": 320, |
|
"height": 240, |
|
"interpolation": "cv2_area", |
|
} |
|
conf = SimpleNamespace(**{**default_conf, **conf}) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def preprocess(image: np.ndarray, conf: SimpleNamespace): |
|
image = image.astype(np.float32, copy=False) |
|
size = image.shape[:2][::-1] |
|
scale = np.array([1.0, 1.0]) |
|
if conf.resize_max: |
|
scale = conf.resize_max / max(size) |
|
if scale < 1.0: |
|
size_new = tuple(int(round(x * scale)) for x in size) |
|
image = resize_image(image, size_new, "cv2_area") |
|
scale = np.array(size) / np.array(size_new) |
|
if conf.force_resize: |
|
image = resize_image(image, (conf.width, conf.height), "cv2_area") |
|
size_new = (conf.width, conf.height) |
|
scale = np.array(size) / np.array(size_new) |
|
if conf.grayscale: |
|
assert image.ndim == 2, image.shape |
|
image = image[None] |
|
else: |
|
image = image.transpose((2, 0, 1)) |
|
image = torch.from_numpy(image / 255.0).float() |
|
|
|
|
|
size_new = tuple( |
|
map( |
|
lambda x: int(x // conf.dfactor * conf.dfactor), |
|
image.shape[-2:], |
|
) |
|
) |
|
image = F.resize(image, size=size_new, antialias=True) |
|
input_ = image.to(device, non_blocking=True)[None] |
|
data = { |
|
"image": input_, |
|
"image_orig": image_0, |
|
"original_size": np.array(size), |
|
"size": np.array(image.shape[1:][::-1]), |
|
} |
|
return data |
|
|
|
|
|
if len(image_0.shape) == 3 and conf.grayscale: |
|
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY) |
|
else: |
|
image0 = image_0 |
|
|
|
|
|
|
|
data = preprocess(image0, conf) |
|
pred = model({"image": data["image"]}) |
|
pred["image_size"] = data["original_size"] |
|
pred = {**pred, **data} |
|
return pred |
|
|
|
|
|
@torch.no_grad() |
|
def main( |
|
conf: Dict, |
|
image_dir: Path, |
|
export_dir: Optional[Path] = None, |
|
as_half: bool = True, |
|
image_list: Optional[Union[Path, List[str]]] = None, |
|
feature_path: Optional[Path] = None, |
|
overwrite: bool = False, |
|
) -> Path: |
|
logger.info( |
|
"Extracting local features with configuration:" |
|
f"\n{pprint.pformat(conf)}" |
|
) |
|
|
|
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list) |
|
if feature_path is None: |
|
feature_path = Path(export_dir, conf["output"] + ".h5") |
|
feature_path.parent.mkdir(exist_ok=True, parents=True) |
|
skip_names = set( |
|
list_h5_names(feature_path) |
|
if feature_path.exists() and not overwrite |
|
else () |
|
) |
|
dataset.names = [n for n in dataset.names if n not in skip_names] |
|
if len(dataset.names) == 0: |
|
logger.info("Skipping the extraction.") |
|
return feature_path |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
Model = dynamic_load(extractors, conf["model"]["name"]) |
|
model = Model(conf["model"]).eval().to(device) |
|
|
|
loader = torch.utils.data.DataLoader( |
|
dataset, num_workers=1, shuffle=False, pin_memory=True |
|
) |
|
for idx, data in enumerate(tqdm(loader)): |
|
name = dataset.names[idx] |
|
pred = model({"image": data["image"].to(device, non_blocking=True)}) |
|
pred = {k: v[0].cpu().numpy() for k, v in pred.items()} |
|
|
|
pred["image_size"] = original_size = data["original_size"][0].numpy() |
|
if "keypoints" in pred: |
|
size = np.array(data["image"].shape[-2:][::-1]) |
|
scales = (original_size / size).astype(np.float32) |
|
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5 |
|
if "scales" in pred: |
|
pred["scales"] *= scales.mean() |
|
|
|
uncertainty = getattr(model, "detection_noise", 1) * scales.mean() |
|
|
|
if as_half: |
|
for k in pred: |
|
dt = pred[k].dtype |
|
if (dt == np.float32) and (dt != np.float16): |
|
pred[k] = pred[k].astype(np.float16) |
|
|
|
with h5py.File(str(feature_path), "a", libver="latest") as fd: |
|
try: |
|
if name in fd: |
|
del fd[name] |
|
grp = fd.create_group(name) |
|
for k, v in pred.items(): |
|
grp.create_dataset(k, data=v) |
|
if "keypoints" in pred: |
|
grp["keypoints"].attrs["uncertainty"] = uncertainty |
|
except OSError as error: |
|
if "No space left on device" in error.args[0]: |
|
logger.error( |
|
"Out of disk space: storing features on disk can take " |
|
"significant space, did you enable the as_half flag?" |
|
) |
|
del grp, fd[name] |
|
raise error |
|
|
|
del pred |
|
|
|
logger.info("Finished exporting features.") |
|
return feature_path |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--image_dir", type=Path, required=True) |
|
parser.add_argument("--export_dir", type=Path, required=True) |
|
parser.add_argument( |
|
"--conf", |
|
type=str, |
|
default="superpoint_aachen", |
|
choices=list(confs.keys()), |
|
) |
|
parser.add_argument("--as_half", action="store_true") |
|
parser.add_argument("--image_list", type=Path) |
|
parser.add_argument("--feature_path", type=Path) |
|
args = parser.parse_args() |
|
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half) |
|
|