|
""" |
|
Code for loading models trained with EigenPlaces (or CosPlace) as a global |
|
features extractor for geolocalization through image retrieval. |
|
Multiple models are available with different backbones. Below is a summary of |
|
models available (backbone : list of available output descriptors |
|
dimensionality). For example you can use a model based on a ResNet50 with |
|
descriptors dimensionality 1024. |
|
|
|
EigenPlaces trained models: |
|
ResNet18: [ 256, 512] |
|
ResNet50: [128, 256, 512, 2048] |
|
ResNet101: [128, 256, 512, 2048] |
|
VGG16: [ 512] |
|
|
|
CosPlace trained models: |
|
ResNet18: [32, 64, 128, 256, 512] |
|
ResNet50: [32, 64, 128, 256, 512, 1024, 2048] |
|
ResNet101: [32, 64, 128, 256, 512, 1024, 2048] |
|
ResNet152: [32, 64, 128, 256, 512, 1024, 2048] |
|
VGG16: [ 64, 128, 256, 512] |
|
|
|
EigenPlaces paper (ICCV 2023): https://arxiv.org/abs/2308.10832 |
|
CosPlace paper (CVPR 2022): https://arxiv.org/abs/2204.02287 |
|
""" |
|
|
|
import torch |
|
import torchvision.transforms as tvf |
|
|
|
from ..utils.base_model import BaseModel |
|
|
|
|
|
class EigenPlaces(BaseModel): |
|
default_conf = { |
|
"variant": "EigenPlaces", |
|
"backbone": "ResNet101", |
|
"fc_output_dim": 2048, |
|
} |
|
required_inputs = ["image"] |
|
|
|
def _init(self, conf): |
|
self.net = torch.hub.load( |
|
"gmberton/" + conf["variant"], |
|
"get_trained_model", |
|
backbone=conf["backbone"], |
|
fc_output_dim=conf["fc_output_dim"], |
|
).eval() |
|
|
|
mean = [0.485, 0.456, 0.406] |
|
std = [0.229, 0.224, 0.225] |
|
self.norm_rgb = tvf.Normalize(mean=mean, std=std) |
|
|
|
def _forward(self, data): |
|
image = self.norm_rgb(data["image"]) |
|
desc = self.net(image) |
|
return { |
|
"global_descriptor": desc, |
|
} |
|
|