|
import sys |
|
from pathlib import Path |
|
|
|
import torchvision.transforms as tvf |
|
|
|
from .. import logger |
|
from ..utils.base_model import BaseModel |
|
|
|
tp_path = Path(__file__).parent / "../../third_party" |
|
sys.path.append(str(tp_path)) |
|
from pram.nets.sfd2 import load_sfd2 |
|
|
|
|
|
class SFD2(BaseModel): |
|
default_conf = { |
|
"max_keypoints": 4096, |
|
"model_name": "sfd2_20230511_210205_resnet4x.79.pth", |
|
"conf_th": 0.001, |
|
} |
|
required_inputs = ["image"] |
|
|
|
def _init(self, conf): |
|
self.conf = {**self.default_conf, **conf} |
|
self.norm_rgb = tvf.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
model_path = tp_path / "pram" / "weights" / self.conf["model_name"] |
|
self.net = load_sfd2(weight_path=model_path).eval() |
|
|
|
logger.info("Load SFD2 model done.") |
|
|
|
def _forward(self, data): |
|
pred = self.net.extract_local_global( |
|
data={"image": self.norm_rgb(data["image"])}, config=self.conf |
|
) |
|
out = { |
|
"keypoints": pred["keypoints"][0][None], |
|
"scores": pred["scores"][0][None], |
|
"descriptors": pred["descriptors"][0][None], |
|
} |
|
return out |
|
|