|
import argparse |
|
import pprint |
|
from functools import partial |
|
from pathlib import Path |
|
from queue import Queue |
|
from threading import Thread |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import h5py |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from . import logger, matchers |
|
from .utils.base_model import dynamic_load |
|
from .utils.parsers import names_to_pair, names_to_pair_old, parse_retrieval |
|
|
|
""" |
|
A set of standard configurations that can be directly selected from the command |
|
line using their name. Each is a dictionary with the following entries: |
|
- output: the name of the match file that will be generated. |
|
- model: the model configuration, as passed to a feature matcher. |
|
""" |
|
confs = { |
|
"superglue": { |
|
"output": "matches-superglue", |
|
"model": { |
|
"name": "superglue", |
|
"weights": "outdoor", |
|
"sinkhorn_iterations": 50, |
|
"match_threshold": 0.2, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"force_resize": False, |
|
}, |
|
}, |
|
"superglue-fast": { |
|
"output": "matches-superglue-it5", |
|
"model": { |
|
"name": "superglue", |
|
"weights": "outdoor", |
|
"sinkhorn_iterations": 5, |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
"superpoint-lightglue": { |
|
"output": "matches-lightglue", |
|
"model": { |
|
"name": "lightglue", |
|
"match_threshold": 0.2, |
|
"width_confidence": 0.99, |
|
"depth_confidence": 0.95, |
|
"features": "superpoint", |
|
"model_name": "superpoint_lightglue.pth", |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"force_resize": False, |
|
}, |
|
}, |
|
"disk-lightglue": { |
|
"output": "matches-disk-lightglue", |
|
"model": { |
|
"name": "lightglue", |
|
"match_threshold": 0.2, |
|
"width_confidence": 0.99, |
|
"depth_confidence": 0.95, |
|
"features": "disk", |
|
"model_name": "disk_lightglue.pth", |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"force_resize": False, |
|
}, |
|
}, |
|
"sift-lightglue": { |
|
"output": "matches-sift-lightglue", |
|
"model": { |
|
"name": "lightglue", |
|
"match_threshold": 0.2, |
|
"width_confidence": 0.99, |
|
"depth_confidence": 0.95, |
|
"features": "sift", |
|
"add_scale_ori": True, |
|
"model_name": "sift_lightglue.pth", |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"force_resize": False, |
|
}, |
|
}, |
|
"sgmnet": { |
|
"output": "matches-sgmnet", |
|
"model": { |
|
"name": "sgmnet", |
|
"seed_top_k": [256, 256], |
|
"seed_radius_coe": 0.01, |
|
"net_channels": 128, |
|
"layer_num": 9, |
|
"head": 4, |
|
"seedlayer": [0, 6], |
|
"use_mc_seeding": True, |
|
"use_score_encoding": False, |
|
"conf_bar": [1.11, 0.1], |
|
"sink_iter": [10, 100], |
|
"detach_iter": 1000000, |
|
"match_threshold": 0.2, |
|
}, |
|
"preprocessing": { |
|
"grayscale": True, |
|
"resize_max": 1024, |
|
"dfactor": 8, |
|
"force_resize": False, |
|
}, |
|
}, |
|
"NN-superpoint": { |
|
"output": "matches-NN-mutual-dist.7", |
|
"model": { |
|
"name": "nearest_neighbor", |
|
"do_mutual_check": True, |
|
"distance_threshold": 0.7, |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
"NN-ratio": { |
|
"output": "matches-NN-mutual-ratio.8", |
|
"model": { |
|
"name": "nearest_neighbor", |
|
"do_mutual_check": True, |
|
"ratio_threshold": 0.8, |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
"NN-mutual": { |
|
"output": "matches-NN-mutual", |
|
"model": { |
|
"name": "nearest_neighbor", |
|
"do_mutual_check": True, |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
"Dual-Softmax": { |
|
"output": "matches-Dual-Softmax", |
|
"model": { |
|
"name": "dual_softmax", |
|
"match_threshold": 0.01, |
|
"inv_temperature": 20, |
|
}, |
|
}, |
|
"adalam": { |
|
"output": "matches-adalam", |
|
"model": { |
|
"name": "adalam", |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
"imp": { |
|
"output": "matches-imp", |
|
"model": { |
|
"name": "imp", |
|
"match_threshold": 0.2, |
|
}, |
|
}, |
|
} |
|
|
|
|
|
class WorkQueue: |
|
def __init__(self, work_fn, num_threads=1): |
|
self.queue = Queue(num_threads) |
|
self.threads = [ |
|
Thread(target=self.thread_fn, args=(work_fn,)) |
|
for _ in range(num_threads) |
|
] |
|
for thread in self.threads: |
|
thread.start() |
|
|
|
def join(self): |
|
for thread in self.threads: |
|
self.queue.put(None) |
|
for thread in self.threads: |
|
thread.join() |
|
|
|
def thread_fn(self, work_fn): |
|
item = self.queue.get() |
|
while item is not None: |
|
work_fn(item) |
|
item = self.queue.get() |
|
|
|
def put(self, data): |
|
self.queue.put(data) |
|
|
|
|
|
class FeaturePairsDataset(torch.utils.data.Dataset): |
|
def __init__(self, pairs, feature_path_q, feature_path_r): |
|
self.pairs = pairs |
|
self.feature_path_q = feature_path_q |
|
self.feature_path_r = feature_path_r |
|
|
|
def __getitem__(self, idx): |
|
name0, name1 = self.pairs[idx] |
|
data = {} |
|
with h5py.File(self.feature_path_q, "r") as fd: |
|
grp = fd[name0] |
|
for k, v in grp.items(): |
|
data[k + "0"] = torch.from_numpy(v.__array__()).float() |
|
|
|
data["image0"] = torch.empty((1,) + tuple(grp["image_size"])[::-1]) |
|
with h5py.File(self.feature_path_r, "r") as fd: |
|
grp = fd[name1] |
|
for k, v in grp.items(): |
|
data[k + "1"] = torch.from_numpy(v.__array__()).float() |
|
data["image1"] = torch.empty((1,) + tuple(grp["image_size"])[::-1]) |
|
return data |
|
|
|
def __len__(self): |
|
return len(self.pairs) |
|
|
|
|
|
def writer_fn(inp, match_path): |
|
pair, pred = inp |
|
with h5py.File(str(match_path), "a", libver="latest") as fd: |
|
if pair in fd: |
|
del fd[pair] |
|
grp = fd.create_group(pair) |
|
matches = pred["matches0"][0].cpu().short().numpy() |
|
grp.create_dataset("matches0", data=matches) |
|
if "matching_scores0" in pred: |
|
scores = pred["matching_scores0"][0].cpu().half().numpy() |
|
grp.create_dataset("matching_scores0", data=scores) |
|
|
|
|
|
def main( |
|
conf: Dict, |
|
pairs: Path, |
|
features: Union[Path, str], |
|
export_dir: Optional[Path] = None, |
|
matches: Optional[Path] = None, |
|
features_ref: Optional[Path] = None, |
|
overwrite: bool = False, |
|
) -> Path: |
|
if isinstance(features, Path) or Path(features).exists(): |
|
features_q = features |
|
if matches is None: |
|
raise ValueError( |
|
"Either provide both features and matches as Path" |
|
" or both as names." |
|
) |
|
else: |
|
if export_dir is None: |
|
raise ValueError( |
|
"Provide an export_dir if features is not" |
|
f" a file path: {features}." |
|
) |
|
features_q = Path(export_dir, features + ".h5") |
|
if matches is None: |
|
matches = Path( |
|
export_dir, f'{features}_{conf["output"]}_{pairs.stem}.h5' |
|
) |
|
|
|
if features_ref is None: |
|
features_ref = features_q |
|
match_from_paths(conf, pairs, matches, features_q, features_ref, overwrite) |
|
|
|
return matches |
|
|
|
|
|
def find_unique_new_pairs(pairs_all: List[Tuple[str]], match_path: Path = None): |
|
"""Avoid to recompute duplicates to save time.""" |
|
pairs = set() |
|
for i, j in pairs_all: |
|
if (j, i) not in pairs: |
|
pairs.add((i, j)) |
|
pairs = list(pairs) |
|
if match_path is not None and match_path.exists(): |
|
with h5py.File(str(match_path), "r", libver="latest") as fd: |
|
pairs_filtered = [] |
|
for i, j in pairs: |
|
if ( |
|
names_to_pair(i, j) in fd |
|
or names_to_pair(j, i) in fd |
|
or names_to_pair_old(i, j) in fd |
|
or names_to_pair_old(j, i) in fd |
|
): |
|
continue |
|
pairs_filtered.append((i, j)) |
|
return pairs_filtered |
|
return pairs |
|
|
|
|
|
@torch.no_grad() |
|
def match_from_paths( |
|
conf: Dict, |
|
pairs_path: Path, |
|
match_path: Path, |
|
feature_path_q: Path, |
|
feature_path_ref: Path, |
|
overwrite: bool = False, |
|
) -> Path: |
|
logger.info( |
|
"Matching local features with configuration:" |
|
f"\n{pprint.pformat(conf)}" |
|
) |
|
|
|
if not feature_path_q.exists(): |
|
raise FileNotFoundError(f"Query feature file {feature_path_q}.") |
|
if not feature_path_ref.exists(): |
|
raise FileNotFoundError(f"Reference feature file {feature_path_ref}.") |
|
match_path.parent.mkdir(exist_ok=True, parents=True) |
|
|
|
assert pairs_path.exists(), pairs_path |
|
pairs = parse_retrieval(pairs_path) |
|
pairs = [(q, r) for q, rs in pairs.items() for r in rs] |
|
pairs = find_unique_new_pairs(pairs, None if overwrite else match_path) |
|
if len(pairs) == 0: |
|
logger.info("Skipping the matching.") |
|
return |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
Model = dynamic_load(matchers, conf["model"]["name"]) |
|
model = Model(conf["model"]).eval().to(device) |
|
|
|
dataset = FeaturePairsDataset(pairs, feature_path_q, feature_path_ref) |
|
loader = torch.utils.data.DataLoader( |
|
dataset, num_workers=5, batch_size=1, shuffle=False, pin_memory=True |
|
) |
|
writer_queue = WorkQueue(partial(writer_fn, match_path=match_path), 5) |
|
|
|
for idx, data in enumerate(tqdm(loader, smoothing=0.1)): |
|
data = { |
|
k: v if k.startswith("image") else v.to(device, non_blocking=True) |
|
for k, v in data.items() |
|
} |
|
pred = model(data) |
|
pair = names_to_pair(*pairs[idx]) |
|
writer_queue.put((pair, pred)) |
|
writer_queue.join() |
|
logger.info("Finished exporting matches.") |
|
|
|
|
|
def scale_keypoints(kpts, scale): |
|
if np.any(scale != 1.0): |
|
kpts *= kpts.new_tensor(scale) |
|
return kpts |
|
|
|
|
|
@torch.no_grad() |
|
def match_images(model, feat0, feat1): |
|
|
|
desc0 = feat0["descriptors"][0] |
|
desc1 = feat1["descriptors"][0] |
|
if len(desc0.shape) == 2: |
|
desc0 = desc0.unsqueeze(0) |
|
if len(desc1.shape) == 2: |
|
desc1 = desc1.unsqueeze(0) |
|
if isinstance(feat0["keypoints"], list): |
|
feat0["keypoints"] = feat0["keypoints"][0][None] |
|
if isinstance(feat1["keypoints"], list): |
|
feat1["keypoints"] = feat1["keypoints"][0][None] |
|
input_dict = { |
|
"image0": feat0["image"], |
|
"keypoints0": feat0["keypoints"], |
|
"scores0": feat0["scores"][0].unsqueeze(0), |
|
"descriptors0": desc0, |
|
"image1": feat1["image"], |
|
"keypoints1": feat1["keypoints"], |
|
"scores1": feat1["scores"][0].unsqueeze(0), |
|
"descriptors1": desc1, |
|
} |
|
if "scales" in feat0: |
|
input_dict = {**input_dict, "scales0": feat0["scales"]} |
|
if "scales" in feat1: |
|
input_dict = {**input_dict, "scales1": feat1["scales"]} |
|
if "oris" in feat0: |
|
input_dict = {**input_dict, "oris0": feat0["oris"]} |
|
if "oris" in feat1: |
|
input_dict = {**input_dict, "oris1": feat1["oris"]} |
|
pred = model(input_dict) |
|
pred = { |
|
k: v.cpu().detach()[0] if isinstance(v, torch.Tensor) else v |
|
for k, v in pred.items() |
|
} |
|
kpts0, kpts1 = ( |
|
feat0["keypoints"][0].cpu().numpy(), |
|
feat1["keypoints"][0].cpu().numpy(), |
|
) |
|
matches, confid = pred["matches0"], pred["matching_scores0"] |
|
|
|
valid = matches > -1 |
|
mkpts0 = kpts0[valid] |
|
mkpts1 = kpts1[matches[valid]] |
|
mconfid = confid[valid] |
|
|
|
s0 = feat0["original_size"] / feat0["size"] |
|
s1 = feat1["original_size"] / feat1["size"] |
|
kpts0_origin = scale_keypoints(torch.from_numpy(kpts0 + 0.5), s0) - 0.5 |
|
kpts1_origin = scale_keypoints(torch.from_numpy(kpts1 + 0.5), s1) - 0.5 |
|
|
|
mkpts0_origin = scale_keypoints(torch.from_numpy(mkpts0 + 0.5), s0) - 0.5 |
|
mkpts1_origin = scale_keypoints(torch.from_numpy(mkpts1 + 0.5), s1) - 0.5 |
|
|
|
ret = { |
|
"image0_orig": feat0["image_orig"], |
|
"image1_orig": feat1["image_orig"], |
|
"keypoints0": kpts0, |
|
"keypoints1": kpts1, |
|
"keypoints0_orig": kpts0_origin.numpy(), |
|
"keypoints1_orig": kpts1_origin.numpy(), |
|
"mkeypoints0": mkpts0, |
|
"mkeypoints1": mkpts1, |
|
"mkeypoints0_orig": mkpts0_origin.numpy(), |
|
"mkeypoints1_orig": mkpts1_origin.numpy(), |
|
"mconf": mconfid.numpy(), |
|
} |
|
del feat0, feat1, desc0, desc1, kpts0, kpts1, kpts0_origin, kpts1_origin |
|
torch.cuda.empty_cache() |
|
|
|
return ret |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--pairs", type=Path, required=True) |
|
parser.add_argument("--export_dir", type=Path) |
|
parser.add_argument( |
|
"--features", type=str, default="feats-superpoint-n4096-r1024" |
|
) |
|
parser.add_argument("--matches", type=Path) |
|
parser.add_argument( |
|
"--conf", type=str, default="superglue", choices=list(confs.keys()) |
|
) |
|
args = parser.parse_args() |
|
main(confs[args.conf], args.pairs, args.features, args.export_dir) |
|
|