|
import subprocess |
|
import sys |
|
from collections import OrderedDict, namedtuple |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
from .. import logger |
|
from ..utils.base_model import BaseModel |
|
|
|
sgmnet_path = Path(__file__).parent / "../../third_party/SGMNet" |
|
sys.path.append(str(sgmnet_path)) |
|
|
|
from sgmnet import matcher as SGM_Model |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class SGMNet(BaseModel): |
|
default_conf = { |
|
"name": "SGM", |
|
"model_name": "model_best.pth", |
|
"seed_top_k": [256, 256], |
|
"seed_radius_coe": 0.01, |
|
"net_channels": 128, |
|
"layer_num": 9, |
|
"head": 4, |
|
"seedlayer": [0, 6], |
|
"use_mc_seeding": True, |
|
"use_score_encoding": False, |
|
"conf_bar": [1.11, 0.1], |
|
"sink_iter": [10, 100], |
|
"detach_iter": 1000000, |
|
"match_threshold": 0.2, |
|
} |
|
required_inputs = [ |
|
"image0", |
|
"image1", |
|
] |
|
weight_urls = { |
|
"model_best.pth": "https://drive.google.com/uc?id=1Ca0WmKSSt2G6P7m8YAOlSAHEFar_TAWb&confirm=t", |
|
} |
|
proxy = "http://localhost:1080" |
|
|
|
|
|
def _init(self, conf): |
|
sgmnet_weights = sgmnet_path / "weights/sgm/root" / conf["model_name"] |
|
|
|
link = self.weight_urls[conf["model_name"]] |
|
tar_path = sgmnet_path / "weights.tar.gz" |
|
|
|
if not sgmnet_weights.exists(): |
|
if not tar_path.exists(): |
|
cmd = [ |
|
"gdown", |
|
link, |
|
"-O", |
|
str(tar_path), |
|
"--proxy", |
|
self.proxy, |
|
] |
|
cmd_wo_proxy = ["gdown", link, "-O", str(tar_path)] |
|
logger.info( |
|
f"Downloading the SGMNet model with `{cmd_wo_proxy}`." |
|
) |
|
try: |
|
subprocess.run(cmd_wo_proxy, check=True) |
|
except subprocess.CalledProcessError as e: |
|
logger.info(f"Downloading failed {e}.") |
|
logger.info(f"Downloading the SGMNet model with `{cmd}`.") |
|
try: |
|
subprocess.run(cmd, check=True) |
|
except subprocess.CalledProcessError as e: |
|
logger.error("Failed to download the SGMNet model.") |
|
raise e |
|
cmd = ["tar", "-xvf", str(tar_path), "-C", str(sgmnet_path)] |
|
logger.info(f"Unzip model file `{cmd}`.") |
|
subprocess.run(cmd, check=True) |
|
|
|
|
|
config = namedtuple("config", conf.keys())(*conf.values()) |
|
self.net = SGM_Model(config) |
|
checkpoint = torch.load(sgmnet_weights, map_location="cpu") |
|
|
|
if ( |
|
list(checkpoint["state_dict"].items())[0][0].split(".")[0] |
|
== "module" |
|
): |
|
new_stat_dict = OrderedDict() |
|
for key, value in checkpoint["state_dict"].items(): |
|
new_stat_dict[key[7:]] = value |
|
checkpoint["state_dict"] = new_stat_dict |
|
self.net.load_state_dict(checkpoint["state_dict"]) |
|
logger.info("Load SGMNet model done.") |
|
|
|
def _forward(self, data): |
|
x1 = data["keypoints0"].squeeze() |
|
x2 = data["keypoints1"].squeeze() |
|
score1 = data["scores0"].reshape(-1, 1) |
|
score2 = data["scores1"].reshape(-1, 1) |
|
desc1 = data["descriptors0"].permute(0, 2, 1) |
|
desc2 = data["descriptors1"].permute(0, 2, 1) |
|
size1 = ( |
|
torch.tensor(data["image0"].shape[2:]).flip(0).to(x1.device) |
|
) |
|
size2 = ( |
|
torch.tensor(data["image1"].shape[2:]).flip(0).to(x2.device) |
|
) |
|
norm_x1 = self.normalize_size(x1, size1) |
|
norm_x2 = self.normalize_size(x2, size2) |
|
|
|
x1 = torch.cat((norm_x1, score1), dim=-1) |
|
x2 = torch.cat((norm_x2, score2), dim=-1) |
|
input = {"x1": x1[None], "x2": x2[None], "desc1": desc1, "desc2": desc2} |
|
input = { |
|
k: v.to(device).float() if isinstance(v, torch.Tensor) else v |
|
for k, v in input.items() |
|
} |
|
pred = self.net(input, test_mode=True) |
|
|
|
p = pred["p"] |
|
indices0 = self.match_p(p[0, :-1, :-1]) |
|
pred = { |
|
"matches0": indices0.unsqueeze(0), |
|
"matching_scores0": torch.zeros(indices0.size(0)).unsqueeze(0), |
|
} |
|
return pred |
|
|
|
def match_p(self, p): |
|
score, index = torch.topk(p, k=1, dim=-1) |
|
_, index2 = torch.topk(p, k=1, dim=-2) |
|
mask_th, index, index2 = ( |
|
score[:, 0] > self.conf["match_threshold"], |
|
index[:, 0], |
|
index2.squeeze(0), |
|
) |
|
mask_mc = index2[index] == torch.arange(len(p)).to(device) |
|
mask = mask_th & mask_mc |
|
indices0 = torch.where(mask, index, index.new_tensor(-1)) |
|
return indices0 |
|
|
|
def normalize_size(self, x, size, scale=1): |
|
norm_fac = size.max() |
|
return (x - size / 2 + 0.5) / (norm_fac * scale) |
|
|