|
import argparse |
|
from pathlib import Path |
|
|
|
from ... import ( |
|
extract_features, |
|
localize_sfm, |
|
logger, |
|
match_features, |
|
pairs_from_covisibility, |
|
pairs_from_retrieval, |
|
triangulation, |
|
) |
|
|
|
TEST_SLICES = [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21] |
|
|
|
|
|
def generate_query_list(dataset, path, slice_): |
|
cameras = {} |
|
with open(dataset / "intrinsics.txt", "r") as f: |
|
for line in f.readlines(): |
|
if line[0] == "#" or line == "\n": |
|
continue |
|
data = line.split() |
|
cameras[data[0]] = data[1:] |
|
assert len(cameras) == 2 |
|
|
|
queries = dataset / f"{slice_}/test-images-{slice_}.txt" |
|
with open(queries, "r") as f: |
|
queries = [q.rstrip("\n") for q in f.readlines()] |
|
|
|
out = [[q] + cameras[q.split("_")[2]] for q in queries] |
|
with open(path, "w") as f: |
|
f.write("\n".join(map(" ".join, out))) |
|
|
|
|
|
def run_slice(slice_, root, outputs, num_covis, num_loc): |
|
dataset = root / slice_ |
|
ref_images = dataset / "database" |
|
query_images = dataset / "query" |
|
sift_sfm = dataset / "sparse" |
|
|
|
outputs = outputs / slice_ |
|
outputs.mkdir(exist_ok=True, parents=True) |
|
query_list = dataset / "queries_with_intrinsics.txt" |
|
sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt" |
|
loc_pairs = outputs / f"pairs-query-netvlad{num_loc}.txt" |
|
ref_sfm = outputs / "sfm_superpoint+superglue" |
|
results = outputs / f"CMU_hloc_superpoint+superglue_netvlad{num_loc}.txt" |
|
|
|
|
|
retrieval_conf = extract_features.confs["netvlad"] |
|
feature_conf = extract_features.confs["superpoint_aachen"] |
|
matcher_conf = match_features.confs["superglue"] |
|
|
|
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=num_covis) |
|
features = extract_features.main(feature_conf, ref_images, outputs, as_half=True) |
|
sfm_matches = match_features.main( |
|
matcher_conf, sfm_pairs, feature_conf["output"], outputs |
|
) |
|
triangulation.main(ref_sfm, sift_sfm, ref_images, sfm_pairs, features, sfm_matches) |
|
|
|
generate_query_list(root, query_list, slice_) |
|
global_descriptors = extract_features.main(retrieval_conf, ref_images, outputs) |
|
global_descriptors = extract_features.main(retrieval_conf, query_images, outputs) |
|
pairs_from_retrieval.main( |
|
global_descriptors, loc_pairs, num_loc, query_list=query_list, db_model=ref_sfm |
|
) |
|
|
|
features = extract_features.main(feature_conf, query_images, outputs, as_half=True) |
|
loc_matches = match_features.main( |
|
matcher_conf, loc_pairs, feature_conf["output"], outputs |
|
) |
|
|
|
localize_sfm.main( |
|
ref_sfm, |
|
dataset / "queries/*_time_queries_with_intrinsics.txt", |
|
loc_pairs, |
|
features, |
|
loc_matches, |
|
results, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--slices", |
|
type=str, |
|
default="*", |
|
help="a single number, an interval (e.g. 2-6), " |
|
"or a Python-style list or int (e.g. [2, 3, 4]", |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=Path, |
|
default="datasets/cmu_extended", |
|
help="Path to the dataset, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--outputs", |
|
type=Path, |
|
default="outputs/aachen_extended", |
|
help="Path to the output directory, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--num_covis", |
|
type=int, |
|
default=20, |
|
help="Number of image pairs for SfM, default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--num_loc", |
|
type=int, |
|
default=10, |
|
help="Number of image pairs for loc, default: %(default)s", |
|
) |
|
args = parser.parse_args() |
|
|
|
if args.slice == "*": |
|
slices = TEST_SLICES |
|
if "-" in args.slices: |
|
min_, max_ = args.slices.split("-") |
|
slices = list(range(int(min_), int(max_) + 1)) |
|
else: |
|
slices = eval(args.slices) |
|
if isinstance(slices, int): |
|
slices = [slices] |
|
|
|
for slice_ in slices: |
|
logger.info("Working on slice %s.", slice_) |
|
run_slice( |
|
f"slice{slice_}", args.dataset, args.outputs, args.num_covis, args.num_loc |
|
) |
|
|