Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfApi | |
# Initialize Hugging Face API | |
api = HfApi() | |
# Constants | |
GGUF_TAG = "gguf" | |
CHUNK_SIZE = 1000 | |
# Clickable links function | |
def clickable(x, which_one): | |
if x in ["Not Found", "Unknown"]: | |
return "Not Found" | |
if which_one == "models": | |
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>' | |
else: | |
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>' | |
# Fetch models and return a DataFrame with clickable links | |
def fetch_models(): | |
models = api.list_models(filter=GGUF_TAG, full=True) | |
data = [] | |
for model in models: | |
model_id = model.id if model.id else "Not Found" | |
author = model.author if model.author else "Unknown" | |
data.append({ | |
"Model ID": model_id, | |
"Author Name": author, | |
"Downloads (30d)": model.downloads or 0, | |
"Likes": model.likes or 0, | |
"Created At": model.created_at.isoformat() if model.created_at else "N/A", | |
"Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A", | |
}) | |
df = pd.DataFrame(data) | |
# Apply clickable links to models and authors | |
df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models")) | |
df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models")) | |
return df | |
# Prepare authors DataFrame | |
def prepare_authors_df(models_df): | |
authors_df = models_df.copy() | |
# Extract the author name from the href in the clickable link | |
authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"') | |
grouped = authors_df.groupby("Clean Author Name").agg( | |
Models_Count=("Model ID", "count"), | |
Total_Downloads=("Downloads (30d)", "sum"), | |
Total_Likes=("Likes", "sum") | |
).reset_index() | |
grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True) | |
grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models")) | |
return grouped.sort_values(by="Models_Count", ascending=False) | |
all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False) | |
authors_df = prepare_authors_df(all_models_df) | |
# Calculate totals | |
total_models_count = len(all_models_df) | |
total_downloads = all_models_df["Downloads (30d)"].sum() | |
total_likes = all_models_df["Likes"].sum() | |
def apply_model_filters(search_query, min_downloads, min_likes): | |
df = all_models_df.copy() | |
# Extract visible text for filtering purposes: | |
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0] | |
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0] | |
# Search filter | |
if search_query.strip(): | |
mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \ | |
(visible_author_name.str.contains(search_query, case=False, na=False)) | |
df = df[mask] | |
# Minimum downloads filter | |
if min_downloads is not None and min_downloads > 0: | |
df = df[df["Downloads (30d)"] >= min_downloads] | |
# Minimum likes filter | |
if min_likes is not None and min_likes > 0: | |
df = df[df["Likes"] >= min_likes] | |
return df | |
def filter_models(search_query, min_downloads, min_likes): | |
filtered = apply_model_filters(search_query, min_downloads, min_likes) | |
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered | |
def update_model_table(start_idx, filtered_df): | |
new_end = start_idx + CHUNK_SIZE | |
combined_df = filtered_df.iloc[:new_end].copy() | |
return combined_df, new_end | |
def apply_author_filters(search_query, min_author_downloads, min_author_likes): | |
df = authors_df.copy() | |
# Extract visible text for author filtering: | |
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0] | |
# Search filter for authors | |
if search_query.strip(): | |
mask = visible_author_name.str.contains(search_query, case=False, na=False) | |
df = df[mask] | |
# Minimum total downloads filter | |
if min_author_downloads is not None and min_author_downloads > 0: | |
df = df[df["Total_Downloads"] >= min_author_downloads] | |
# Minimum total likes filter | |
if min_author_likes is not None and min_author_likes > 0: | |
df = df[df["Total_Likes"] >= min_author_likes] | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown(f""" | |
# 🚀GGUF Tracker🚀 | |
Welcome to 🚀**GGUF Tracker**🚀, a live-updating leaderboard for all things GGUF on 🚀Hugging Face. | |
Stats refresh every hour, giving you the latest numbers. | |
By the way, I’m 🚀Richard Erkhov, and you can check out more of what I’m working on at my [🌟**github**](https://github.com/RichardErkhov), | |
[🌟**huggingface**](https://huggingface.co/RichardErkhov) or [🌟**erkhov.com**](https://erkhov.com). Go take a look—I think you’ll like what you find. | |
""") | |
gr.Markdown(f""" | |
# GGUF Models and Authors Leaderboard | |
**Total Models:** {total_models_count} | **Total Downloads (30d):** {total_downloads} | **Total Likes:** {total_likes} | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Models"): | |
with gr.Row(): | |
search_query = gr.Textbox(label="Search (by Model ID or Author Name)") | |
min_downloads = gr.Number(label="Min Downloads (30d)", value=0) | |
min_likes = gr.Number(label="Min Likes", value=0) | |
filter_button = gr.Button("Apply Filters") | |
model_table = gr.DataFrame( | |
value=all_models_df.iloc[:CHUNK_SIZE], | |
interactive=False, | |
label="GGUF Models (Click column headers to sort)", | |
wrap=True, | |
datatype=["markdown", "markdown", "number", "number", "str", "str"] | |
) | |
load_more_button = gr.Button("Load More Models") | |
# States | |
start_idx = gr.State(value=CHUNK_SIZE) | |
filtered_df_state = gr.State(value=all_models_df) # holds the currently filtered df | |
filter_button.click( | |
fn=filter_models, | |
inputs=[search_query, min_downloads, min_likes], | |
outputs=[model_table, start_idx, filtered_df_state] | |
) | |
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx]) | |
with gr.TabItem("Authors"): | |
with gr.Row(): | |
author_search_query = gr.Textbox(label="Search by Author Name") | |
min_author_downloads = gr.Number(label="Min Total Downloads", value=0) | |
min_author_likes = gr.Number(label="Min Total Likes", value=0) | |
author_filter_button = gr.Button("Apply Filters") | |
author_table = gr.DataFrame( | |
value=authors_df, | |
interactive=False, | |
label="Authors (Click column headers to sort)", | |
wrap=True, | |
datatype=["markdown", "number", "number", "number"] | |
) | |
def filter_authors(author_search_query, min_author_downloads, min_author_likes): | |
filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes) | |
return filtered_authors | |
author_filter_button.click( | |
fn=filter_authors, | |
inputs=[author_search_query, min_author_downloads, min_author_likes], | |
outputs=author_table | |
) | |
demo.launch() |