|
# YOLOv9
|
|
|
|
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
|
|
|
|
[](https://arxiv.org/abs/2402.13616)
|
|
[](https://huggingface.co/spaces/kadirnar/Yolov9)
|
|
[](https://huggingface.co/merve/yolov9)
|
|
[](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
|
|
[](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/performance.png" width="79%"/>
|
|
</a>
|
|
</div>
|
|
|
|
|
|
## Performance
|
|
|
|
MS COCO
|
|
|
|
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
|
|
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
|
|
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
|
|
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
|
|
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
|
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
|
|
|
|
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
|
|
|
|
## Useful Links
|
|
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
|
|
|
|
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
|
|
|
|
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
|
|
|
|
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
|
|
|
|
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
|
|
|
|
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
|
|
|
|
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
|
|
|
|
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
|
|
|
|
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
|
|
|
|
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
|
|
|
|
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
|
|
|
|
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
|
|
|
|
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
|
|
|
|
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
|
|
|
|
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
|
|
|
|
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
|
|
|
|
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
|
|
|
|
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
|
|
|
|
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
|
|
|
|
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
|
|
|
|
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
|
|
|
|
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
|
|
|
|
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
|
|
|
|
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
|
|
|
|
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
|
|
|
|
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
|
|
|
|
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
|
|
|
|
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
|
|
|
|
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
|
|
|
|
</details>
|
|
|
|
|
|
## Installation
|
|
|
|
Docker environment (recommended)
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
``` shell
|
|
# create the docker container, you can change the share memory size if you have more.
|
|
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
|
|
|
|
# apt install required packages
|
|
apt update
|
|
apt install -y zip htop screen libgl1-mesa-glx
|
|
|
|
# pip install required packages
|
|
pip install seaborn thop
|
|
|
|
# go to code folder
|
|
cd /yolov9
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
## Evaluation
|
|
|
|
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
|
|
|
|
``` shell
|
|
# evaluate converted yolov9 models
|
|
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
|
|
|
|
# evaluate yolov9 models
|
|
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
|
|
|
|
# evaluate gelan models
|
|
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
|
|
```
|
|
|
|
You will get the results:
|
|
|
|
```
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
|
|
```
|
|
|
|
|
|
## Training
|
|
|
|
Data preparation
|
|
|
|
``` shell
|
|
bash scripts/get_coco.sh
|
|
```
|
|
|
|
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
|
|
|
Single GPU training
|
|
|
|
``` shell
|
|
# train yolov9 models
|
|
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
|
|
|
# train gelan models
|
|
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
|
```
|
|
|
|
Multiple GPU training
|
|
|
|
``` shell
|
|
# train yolov9 models
|
|
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
|
|
|
# train gelan models
|
|
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
|
|
```
|
|
|
|
|
|
## Re-parameterization
|
|
|
|
See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb).
|
|
|
|
|
|
## Inference
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/horses_prediction.jpg" width="49%"/>
|
|
</a>
|
|
</div>
|
|
|
|
``` shell
|
|
# inference converted yolov9 models
|
|
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect
|
|
|
|
# inference yolov9 models
|
|
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect
|
|
|
|
# inference gelan models
|
|
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect
|
|
```
|
|
|
|
|
|
## Citation
|
|
|
|
```
|
|
@article{wang2024yolov9,
|
|
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
|
|
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
|
|
booktitle={arXiv preprint arXiv:2402.13616},
|
|
year={2024}
|
|
}
|
|
```
|
|
|
|
```
|
|
@article{chang2023yolor,
|
|
title={{YOLOR}-Based Multi-Task Learning},
|
|
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
|
|
journal={arXiv preprint arXiv:2309.16921},
|
|
year={2023}
|
|
}
|
|
```
|
|
|
|
|
|
## Teaser
|
|
|
|
Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository.
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/multitask.png" width="99%"/>
|
|
</a>
|
|
</div>
|
|
|
|
#### Object Detection
|
|
|
|
[`gelan-c-det.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt)
|
|
|
|
`object detection`
|
|
|
|
``` shell
|
|
# coco/labels/{split}/*.txt
|
|
# bbox or polygon (1 instance 1 line)
|
|
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
|
|
```
|
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> |
|
|
| :-- | :-: | :-: | :-: | :-: |
|
|
| [**GELAN-C-DET**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) | 640 | 25.3M | 102.1G |**52.3%** |
|
|
| [**YOLOv9-C-DET**]() | 640 | 25.3M | 102.1G | **53.0%** |
|
|
|
|
#### Instance Segmentation
|
|
|
|
[`gelan-c-seg.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt)
|
|
|
|
`object detection` `instance segmentation`
|
|
|
|
``` shell
|
|
# coco/labels/{split}/*.txt
|
|
# polygon (1 instance 1 line)
|
|
python segment/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
|
```
|
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: |
|
|
| [**GELAN-C-SEG**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) | 640 | 27.4M | 144.6G | **52.3%** | **42.4%** |
|
|
| [**YOLOv9-C-SEG**]() | 640 | 27.4M | 145.5G | **53.3%** | **43.5%** |
|
|
|
|
#### Panoptic Segmentation
|
|
|
|
[`gelan-c-pan.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt)
|
|
|
|
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation`
|
|
|
|
``` shell
|
|
# coco/labels/{split}/*.txt
|
|
# polygon (1 instance 1 line)
|
|
# coco/stuff/{split}/*.txt
|
|
# polygon (1 semantic 1 line)
|
|
python panoptic/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
|
```
|
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
| [**GELAN-C-PAN**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) | 640 | 27.6M | 146.7G | **52.6%** | **42.5%** | **39.0%/48.3%** | **52.7%** | **39.4%** |
|
|
| [**YOLOv9-C-PAN**]() | 640 | 28.8M | 187.0G | **52.7%** | **43.0%** | **39.8%/-** | **52.2%** | **40.5%** |
|
|
|
|
#### Image Captioning (not yet released)
|
|
|
|
<!--[`gelan-c-cap.pt`]()-->
|
|
|
|
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` `image captioning`
|
|
|
|
``` shell
|
|
# coco/labels/{split}/*.txt
|
|
# polygon (1 instance 1 line)
|
|
# coco/stuff/{split}/*.txt
|
|
# polygon (1 semantic 1 line)
|
|
# coco/annotations/*.json
|
|
# json (1 split 1 file)
|
|
python caption/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
|
|
```
|
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> | BLEU@4<sup>caption</sup> | CIDEr<sup>caption</sup> |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
| [**GELAN-C-CAP**]() | 640 | 47.5M | - | **51.9%** | **42.6%** | **42.5%/-** | **56.5%** | **41.7%** | **38.8** | **122.3** |
|
|
| [**YOLOv9-C-CAP**]() | 640 | 47.5M | - | **52.1%** | **42.6%** | **43.0%/-** | **56.4%** | **42.1%** | **39.1** | **122.0** |
|
|
<!--| [**YOLOR-MT**]() | 640 | 79.3M | - | **51.0%** | **41.7%** | **-/49.6%** | **55.9%** | **40.5%** | **35.7** | **112.7** |-->
|
|
|
|
|
|
## Acknowledgements
|
|
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
|
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
|
* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)
|
|
* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet)
|
|
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
|
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
|
* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6)
|
|
|
|
</details>
|
|
|