Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, List, Optional, Union | |
from datasets import load_dataset, load_metric | |
import numpy as np | |
import torch | |
import torchaudio | |
import transformers | |
from transformers import ( | |
HfArgumentParser, | |
TrainingArguments, | |
EvalPrediction, | |
AutoConfig, | |
Wav2Vec2Processor, | |
Wav2Vec2FeatureExtractor, | |
is_apex_available, | |
set_seed, | |
) | |
from transformers.trainer_utils import get_last_checkpoint, is_main_process | |
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification | |
from src.collator import DataCollatorCTCWithPadding | |
from src.trainer import CTCTrainer | |
logger = logging.getLogger(__name__) | |
MODEL_MODES = ["wav2vec", "hubert"] | |
POOLING_MODES = ["mean", "sum", "max"] | |
DELIMITERS = {"tab": "\t", "comma": ",", "pipe": "|"} | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
model_mode: str = field( | |
default="wav2vec", | |
metadata={ | |
"help": "Specifies the base model and must be from the following: " + ", ".join(MODEL_MODES) | |
}, | |
) | |
pooling_mode: str = field( | |
default="mean", | |
metadata={ | |
"help": "Specifies the reduction to apply to the output of Wav2Vec2 model and must be from the following: " + ", ".join( | |
POOLING_MODES) | |
}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
feature_extractor_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained feature_extractor name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
freeze_feature_extractor: Optional[bool] = field( | |
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " | |
"with private models)." | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to test on (a csv or JSON file)."}, | |
) | |
input_column: Optional[str] = field( | |
default="path", | |
metadata={"help": "The name of the column in the datasets containing the audio path."}, | |
) | |
target_column: Optional[str] = field( | |
default="emotion", | |
metadata={"help": "The name of the column in the datasets containing the labels."}, | |
) | |
delimiter: Optional[str] = field( | |
default="tab", | |
metadata={ | |
"help": "Specifies the character delimiting individual cells in the CSV data and must be from the following: " + ", ".join( | |
DELIMITERS.keys()) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this " | |
"value if set." | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
}, | |
) | |
min_duration_in_seconds: Optional[float] = field( | |
default=None, | |
metadata={"help": "Filters out examples less than specified. Defaults to no filtering."}, | |
) | |
max_duration_in_seconds: Optional[float] = field( | |
default=None, | |
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."}, | |
) | |
def __post_init__(self): | |
if self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
logger.info(f"last_checkpoint: {last_checkpoint}") | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Loading a dataset from your local files. | |
# CSV/JSON training and evaluation files are needed. | |
data_files = {"train": data_args.train_file, "validation": data_args.validation_file} | |
# Get the test dataset: you can provide your own CSV/JSON test file (see below) | |
# when you use `do_predict` without specifying a GLUE benchmark task. | |
if training_args.do_predict: | |
if data_args.test_file is not None: | |
train_extension = data_args.train_file.split(".")[-1] | |
test_extension = data_args.test_file.split(".")[-1] | |
assert ( | |
test_extension == train_extension | |
), "`test_file` should have the same extension (csv or json) as `train_file`." | |
data_files["test"] = data_args.test_file | |
else: | |
raise ValueError("Need a test file for `do_predict`.") | |
for key in data_files.keys(): | |
logger.info(f"load a local file for {key}: {data_files[key]}") | |
if data_args.train_file.endswith(".csv"): | |
# Loading a dataset from local csv files | |
datasets = load_dataset( | |
"csv", | |
data_files=data_files, | |
delimiter=DELIMITERS.get(data_args.delimiter, "\t"), | |
cache_dir=model_args.cache_dir | |
) | |
else: | |
# Loading a dataset from local json files | |
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) | |
input_column_name = data_args.input_column | |
output_column_name = data_args.target_column | |
# Trying to have good defaults here, don't hesitate to tweak to your needs. | |
is_regression = datasets["train"].features[output_column_name].dtype in ["float32", "float64"] | |
if is_regression: | |
num_labels = 1 | |
label_list = [] | |
logger.info(f"*** A regression problem ***") | |
else: | |
# A useful fast method: | |
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique | |
label_list = datasets["train"].unique(output_column_name) | |
label_list.sort() # Let's sort it for determinism | |
num_labels = len(label_list) | |
logger.info(f"*** A classification problem with {num_labels} classes ***") | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
num_labels=num_labels, | |
label2id={label: i for i, label in enumerate(label_list)}, | |
id2label={i: label for i, label in enumerate(label_list)}, | |
finetuning_task="wav2vec2_clf", | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
setattr(config, 'pooling_mode', model_args.pooling_mode) | |
# tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(model_args.model_name_or_path) | |
# feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_args.model_name_or_path) | |
# processor = Wav2Vec2Processor.from_pretrained( | |
# model_args.processor_name if model_args.processor_name else model_args.model_name_or_path, | |
# cache_dir=model_args.cache_dir, | |
# revision=model_args.model_revision, | |
# use_auth_token=True if model_args.use_auth_token else None, | |
# ) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
target_sampling_rate = feature_extractor.sampling_rate | |
if model_args.model_mode == "wav2vec": | |
model = Wav2Vec2ForSpeechClassification.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
elif model_args.model_mode == "hubert": | |
model = HubertForSpeechClassification.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
raise ValueError("--model_mode does not exist in predefined modes: " + ",".join(MODEL_MODES)) | |
if model_args.freeze_feature_extractor: | |
model.freeze_feature_extractor() | |
# NOTE: Duration controller for the future `min_duration_in_seconds` `max_duration_in_seconds` | |
# data_args.min_duration_in_seconds, data_args.max_duration_in_seconds | |
def speech_file_to_array_fn(path): | |
speech_array, sampling_rate = torchaudio.load(path) | |
resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate) | |
speech = resampler(speech_array).squeeze().numpy() | |
return speech | |
def label_to_id(label, label_list): | |
if len(label_list) > 0: | |
return label_list.index(label) if label in label_list else -1 | |
return label | |
def preprocess_function(examples): | |
speech_list = [speech_file_to_array_fn(path) for path in examples[input_column_name]] | |
target_list = [label_to_id(label, label_list) for label in examples[output_column_name]] | |
result = feature_extractor(speech_list, sampling_rate=target_sampling_rate) | |
result["labels"] = list(target_list) | |
return result | |
if training_args.do_train: | |
if "train" not in datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = datasets["train"] | |
if data_args.max_train_samples is not None: | |
train_dataset = train_dataset.select(range(data_args.max_train_samples)) | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache | |
) | |
logger.info(f"Split sizes: {len(train_dataset)} train") | |
if training_args.do_eval: | |
if "validation" not in datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache | |
) | |
logger.info(f"Split sizes: {len(eval_dataset)} validation") | |
if training_args.do_predict: | |
if "test" not in datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = datasets["test"] | |
if data_args.max_predict_samples is not None: | |
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) | |
predict_dataset = predict_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache | |
) | |
logger.info(f"Split sizes: {len(predict_dataset)} test.") | |
# Metric | |
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
# predictions and label_ids field) and has to return a dictionary string to float. | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions | |
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) | |
if is_regression: | |
return {"mse": ((preds - p.label_ids) ** 2).mean().item()} | |
else: | |
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} | |
# Data collator | |
data_collator = DataCollatorCTCWithPadding(feature_extractor=feature_extractor, padding=True) | |
# Initialize our Trainer | |
trainer = CTCTrainer( | |
model=model, | |
data_collator=data_collator, | |
args=training_args, | |
compute_metrics=compute_metrics, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=feature_extractor, | |
) | |
# Training | |
if training_args.do_train: | |
if last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
elif os.path.isdir(model_args.model_name_or_path): | |
checkpoint = model_args.model_name_or_path | |
else: | |
checkpoint = None | |
logger.info(f"*** Training from: {checkpoint} ***") | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() | |
# save the feature_extractor and the tokenizer | |
if is_main_process(training_args.local_rank): | |
feature_extractor.save_pretrained(training_args.output_dir) | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Final test metrics | |
if training_args.do_predict: | |
logger.info("*** Test ***") | |
predict_dataset.remove_columns_(output_column_name) | |
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions | |
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) | |
output_predict_file = os.path.join(training_args.output_dir, f"predict_results.txt") | |
if trainer.is_world_process_zero(): | |
with open(output_predict_file, "w", encoding="utf-8") as writer: | |
logger.info(f"***** Predict results *****") | |
writer.write("index\tprediction\n") | |
for index, item in enumerate(predictions): | |
if is_regression: | |
writer.write(f"{index}\t{item:3.3f}\n") | |
else: | |
item = label_list[item] | |
writer.write(f"{index}\t{item}\n") | |
# NOTE: Pushing to hub for future | |
# training_args.push_to_hub | |
return results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |