Turkish-SER / HuBERT-SER /run_wav2vec_clf.py
SeaBenSea's picture
Upload 13 files
5c5f218 verified
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from datasets import load_dataset, load_metric
import numpy as np
import torch
import torchaudio
import transformers
from transformers import (
HfArgumentParser,
TrainingArguments,
EvalPrediction,
AutoConfig,
Wav2Vec2Processor,
Wav2Vec2FeatureExtractor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
from src.collator import DataCollatorCTCWithPadding
from src.trainer import CTCTrainer
logger = logging.getLogger(__name__)
MODEL_MODES = ["wav2vec", "hubert"]
POOLING_MODES = ["mean", "sum", "max"]
DELIMITERS = {"tab": "\t", "comma": ",", "pipe": "|"}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_mode: str = field(
default="wav2vec",
metadata={
"help": "Specifies the base model and must be from the following: " + ", ".join(MODEL_MODES)
},
)
pooling_mode: str = field(
default="mean",
metadata={
"help": "Specifies the reduction to apply to the output of Wav2Vec2 model and must be from the following: " + ", ".join(
POOLING_MODES)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained feature_extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to test on (a csv or JSON file)."},
)
input_column: Optional[str] = field(
default="path",
metadata={"help": "The name of the column in the datasets containing the audio path."},
)
target_column: Optional[str] = field(
default="emotion",
metadata={"help": "The name of the column in the datasets containing the labels."},
)
delimiter: Optional[str] = field(
default="tab",
metadata={
"help": "Specifies the character delimiting individual cells in the CSV data and must be from the following: " + ", ".join(
DELIMITERS.keys())
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
min_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples less than specified. Defaults to no filtering."},
)
max_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
logger.info(f"last_checkpoint: {last_checkpoint}")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
datasets = load_dataset(
"csv",
data_files=data_files,
delimiter=DELIMITERS.get(data_args.delimiter, "\t"),
cache_dir=model_args.cache_dir
)
else:
# Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
input_column_name = data_args.input_column
output_column_name = data_args.target_column
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = datasets["train"].features[output_column_name].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
label_list = []
logger.info(f"*** A regression problem ***")
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = datasets["train"].unique(output_column_name)
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
logger.info(f"*** A classification problem with {num_labels} classes ***")
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
label2id={label: i for i, label in enumerate(label_list)},
id2label={i: label for i, label in enumerate(label_list)},
finetuning_task="wav2vec2_clf",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
setattr(config, 'pooling_mode', model_args.pooling_mode)
# tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(model_args.model_name_or_path)
# feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_args.model_name_or_path)
# processor = Wav2Vec2Processor.from_pretrained(
# model_args.processor_name if model_args.processor_name else model_args.model_name_or_path,
# cache_dir=model_args.cache_dir,
# revision=model_args.model_revision,
# use_auth_token=True if model_args.use_auth_token else None,
# )
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
target_sampling_rate = feature_extractor.sampling_rate
if model_args.model_mode == "wav2vec":
model = Wav2Vec2ForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
elif model_args.model_mode == "hubert":
model = HubertForSpeechClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise ValueError("--model_mode does not exist in predefined modes: " + ",".join(MODEL_MODES))
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# NOTE: Duration controller for the future `min_duration_in_seconds` `max_duration_in_seconds`
# data_args.min_duration_in_seconds, data_args.max_duration_in_seconds
def speech_file_to_array_fn(path):
speech_array, sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def label_to_id(label, label_list):
if len(label_list) > 0:
return label_list.index(label) if label in label_list else -1
return label
def preprocess_function(examples):
speech_list = [speech_file_to_array_fn(path) for path in examples[input_column_name]]
target_list = [label_to_id(label, label_list) for label in examples[output_column_name]]
result = feature_extractor(speech_list, sampling_rate=target_sampling_rate)
result["labels"] = list(target_list)
return result
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(train_dataset)} train")
if training_args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(eval_dataset)} validation")
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
logger.info(f"Split sizes: {len(predict_dataset)} test.")
# Metric
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator
data_collator = DataCollatorCTCWithPadding(feature_extractor=feature_extractor, padding=True)
# Initialize our Trainer
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
logger.info(f"*** Training from: {checkpoint} ***")
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
# save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank):
feature_extractor.save_pretrained(training_args.output_dir)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Final test metrics
if training_args.do_predict:
logger.info("*** Test ***")
predict_dataset.remove_columns_(output_column_name)
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_predict_file = os.path.join(training_args.output_dir, f"predict_results.txt")
if trainer.is_world_process_zero():
with open(output_predict_file, "w", encoding="utf-8") as writer:
logger.info(f"***** Predict results *****")
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = label_list[item]
writer.write(f"{index}\t{item}\n")
# NOTE: Pushing to hub for future
# training_args.push_to_hub
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()