Spaces:
Running
Running
Update app.py
#5
by
diabolic6045
- opened
app.py
CHANGED
@@ -3,109 +3,21 @@ import numpy as np
|
|
3 |
import torch
|
4 |
import random
|
5 |
from transformers import (
|
6 |
-
GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
7 |
-
TrainerCallback # Import TrainerCallback here
|
8 |
)
|
9 |
from datasets import Dataset
|
10 |
from huggingface_hub import HfApi
|
11 |
import plotly.graph_objects as go
|
12 |
import time
|
13 |
from datetime import datetime
|
14 |
-
import
|
15 |
-
|
16 |
|
17 |
# Cyberpunk and Loading Animation Styling
|
18 |
def setup_cyberpunk_style():
|
19 |
st.markdown("""
|
20 |
<style>
|
21 |
-
|
22 |
-
font-family: 'Orbitron', sans-serif !important;
|
23 |
-
color: #00ff9d !important;
|
24 |
-
}
|
25 |
-
.stApp {
|
26 |
-
background: radial-gradient(circle, rgba(0, 0, 0, 0.95) 20%, rgba(0, 50, 80, 0.95) 90%);
|
27 |
-
color: #00ff9d;
|
28 |
-
font-family: 'Orbitron', sans-serif;
|
29 |
-
font-size: 16px;
|
30 |
-
line-height: 1.6;
|
31 |
-
padding: 20px;
|
32 |
-
box-sizing: border-box;
|
33 |
-
}
|
34 |
-
|
35 |
-
.main-title {
|
36 |
-
text-align: center;
|
37 |
-
font-size: 4em;
|
38 |
-
color: #00ff9d;
|
39 |
-
letter-spacing: 4px;
|
40 |
-
animation: glow 2s ease-in-out infinite alternate;
|
41 |
-
}
|
42 |
-
|
43 |
-
@keyframes glow {
|
44 |
-
from {text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d;}
|
45 |
-
to {text-shadow: 0 0 15px #00b8ff, 0 0 20px #00b8ff;}
|
46 |
-
}
|
47 |
-
.stButton > button {
|
48 |
-
font-family: 'Orbitron', sans-serif;
|
49 |
-
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
50 |
-
color: #000;
|
51 |
-
font-size: 1.1em;
|
52 |
-
padding: 10px 20px;
|
53 |
-
border: none;
|
54 |
-
border-radius: 8px;
|
55 |
-
transition: all 0.3s ease;
|
56 |
-
}
|
57 |
-
|
58 |
-
.stButton > button:hover {
|
59 |
-
transform: scale(1.1);
|
60 |
-
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
|
61 |
-
}
|
62 |
-
.progress-bar-container {
|
63 |
-
background: rgba(0, 0, 0, 0.5);
|
64 |
-
border-radius: 15px;
|
65 |
-
overflow: hidden;
|
66 |
-
width: 100%;
|
67 |
-
height: 30px;
|
68 |
-
position: relative;
|
69 |
-
margin: 10px 0;
|
70 |
-
}
|
71 |
-
|
72 |
-
.progress-bar {
|
73 |
-
height: 100%;
|
74 |
-
width: 0%;
|
75 |
-
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
76 |
-
transition: width 0.5s ease;
|
77 |
-
}
|
78 |
-
|
79 |
-
.go-button {
|
80 |
-
font-family: 'Orbitron', sans-serif;
|
81 |
-
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
82 |
-
color: #000;
|
83 |
-
font-size: 1.1em;
|
84 |
-
padding: 10px 20px;
|
85 |
-
border: none;
|
86 |
-
border-radius: 8px;
|
87 |
-
transition: all 0.3s ease;
|
88 |
-
cursor: pointer;
|
89 |
-
}
|
90 |
-
|
91 |
-
.go-button:hover {
|
92 |
-
transform: scale(1.1);
|
93 |
-
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
|
94 |
-
}
|
95 |
-
|
96 |
-
.loading-animation {
|
97 |
-
display: inline-block;
|
98 |
-
width: 20px;
|
99 |
-
height: 20px;
|
100 |
-
border: 3px solid #00ff9d;
|
101 |
-
border-radius: 50%;
|
102 |
-
border-top-color: transparent;
|
103 |
-
animation: spin 1s ease-in-out infinite;
|
104 |
-
}
|
105 |
-
|
106 |
-
@keyframes spin {
|
107 |
-
to {transform: rotate(360deg);}
|
108 |
-
}
|
109 |
</style>
|
110 |
""", unsafe_allow_html=True)
|
111 |
|
@@ -121,30 +33,6 @@ def prepare_dataset(data, tokenizer, block_size=128):
|
|
121 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
122 |
return tokenized_dataset
|
123 |
|
124 |
-
# Training Dashboard Class with Enhanced Display
|
125 |
-
class TrainingDashboard:
|
126 |
-
def __init__(self):
|
127 |
-
self.metrics = {
|
128 |
-
'current_loss': 0,
|
129 |
-
'best_loss': float('inf'),
|
130 |
-
'generation': 0,
|
131 |
-
'individual': 0,
|
132 |
-
'start_time': time.time(),
|
133 |
-
'training_speed': 0
|
134 |
-
}
|
135 |
-
self.history = []
|
136 |
-
|
137 |
-
def update(self, loss, generation, individual):
|
138 |
-
self.metrics['current_loss'] = loss
|
139 |
-
self.metrics['generation'] = generation
|
140 |
-
self.metrics['individual'] = individual
|
141 |
-
if loss < self.metrics['best_loss']:
|
142 |
-
self.metrics['best_loss'] = loss
|
143 |
-
|
144 |
-
elapsed_time = time.time() - self.metrics['start_time']
|
145 |
-
self.metrics['training_speed'] = (generation * individual) / elapsed_time
|
146 |
-
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})
|
147 |
-
|
148 |
# Define Model Initialization
|
149 |
def initialize_model(model_name="gpt2"):
|
150 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
@@ -155,66 +43,164 @@ def initialize_model(model_name="gpt2"):
|
|
155 |
# Load Dataset Function with Uploaded File Option
|
156 |
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
|
157 |
if data_source == "demo":
|
158 |
-
data = [
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
if uploaded_file.name.endswith(".txt"):
|
163 |
data = [uploaded_file.read().decode("utf-8")]
|
164 |
elif uploaded_file.name.endswith(".csv"):
|
165 |
-
import pandas as pd
|
166 |
df = pd.read_csv(uploaded_file)
|
167 |
-
data = df[df.columns[0]].tolist() #
|
|
|
|
|
168 |
else:
|
169 |
data = ["No file uploaded. Please upload a dataset."]
|
170 |
|
171 |
dataset = prepare_dataset(data, tokenizer)
|
172 |
return dataset
|
173 |
|
174 |
-
# Train Model Function
|
175 |
-
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4,
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
train_dataset=train_dataset,
|
194 |
-
callbacks=[ProgressCallback(progress_callback)]
|
195 |
-
)
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
# Main App Logic
|
211 |
def main():
|
212 |
setup_cyberpunk_style()
|
213 |
st.markdown('<h1 class="main-title">Neural Training Hub</h1>', unsafe_allow_html=True)
|
214 |
|
215 |
-
# Initialize model and tokenizer
|
216 |
-
model, tokenizer = initialize_model()
|
217 |
-
|
218 |
# Sidebar Configuration with Additional Options
|
219 |
with st.sidebar:
|
220 |
st.markdown("### Configuration Panel")
|
@@ -225,7 +211,7 @@ def main():
|
|
225 |
api = HfApi()
|
226 |
api.set_access_token(hf_token)
|
227 |
st.success("Hugging Face token added successfully!")
|
228 |
-
|
229 |
# Training Parameters
|
230 |
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
|
231 |
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
|
@@ -235,8 +221,8 @@ def main():
|
|
235 |
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
|
236 |
uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
|
237 |
|
238 |
-
custom_learning_rate = st.
|
239 |
-
|
240 |
# Advanced Settings Toggle
|
241 |
advanced_toggle = st.checkbox("Advanced Training Settings")
|
242 |
if advanced_toggle:
|
@@ -245,47 +231,101 @@ def main():
|
|
245 |
else:
|
246 |
warmup_steps = 100
|
247 |
weight_decay = 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
# Load Dataset
|
250 |
train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)
|
251 |
|
252 |
-
# Chatbot Interaction
|
253 |
-
if st.checkbox("Enable Chatbot"):
|
254 |
-
user_input = st.text_input("You:", placeholder="Type your message here...")
|
255 |
-
if user_input:
|
256 |
-
inputs = tokenizer(user_input, return_tensors="pt")
|
257 |
-
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1)
|
258 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
259 |
-
st.write("Bot:", response)
|
260 |
-
|
261 |
# Go Button to Start Training
|
262 |
if st.button("Go"):
|
263 |
-
progress_placeholder = st.empty()
|
264 |
-
loading_animation = st.empty()
|
265 |
st.markdown("### Model Training Progress")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
<div class="progress-bar-container">
|
273 |
-
<div class="progress-bar" style="width: {progress}%;"></div>
|
274 |
-
</div>
|
275 |
-
""", unsafe_allow_html=True)
|
276 |
-
dashboard.update(loss=loss, generation=generation, individual=individual)
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
main()
|
|
|
3 |
import torch
|
4 |
import random
|
5 |
from transformers import (
|
6 |
+
GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
|
|
7 |
)
|
8 |
from datasets import Dataset
|
9 |
from huggingface_hub import HfApi
|
10 |
import plotly.graph_objects as go
|
11 |
import time
|
12 |
from datetime import datetime
|
13 |
+
from typing import Dict, List, Any
|
14 |
+
import pandas as pd # Added pandas import
|
15 |
|
16 |
# Cyberpunk and Loading Animation Styling
|
17 |
def setup_cyberpunk_style():
|
18 |
st.markdown("""
|
19 |
<style>
|
20 |
+
/* [Your existing CSS styles here] */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
</style>
|
22 |
""", unsafe_allow_html=True)
|
23 |
|
|
|
33 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
34 |
return tokenized_dataset
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Define Model Initialization
|
37 |
def initialize_model(model_name="gpt2"):
|
38 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
|
|
43 |
# Load Dataset Function with Uploaded File Option
|
44 |
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
|
45 |
if data_source == "demo":
|
46 |
+
data = [
|
47 |
+
"In the neon-lit streets of Neo-Tokyo, a lone hacker fights against the oppressive megacorporations.",
|
48 |
+
"The rain falls in sheets, washing away the bloodstains from the alleyways.",
|
49 |
+
"She plugs into the matrix, seeking answers to questions that have haunted her for years."
|
50 |
+
]
|
51 |
+
elif data_source == "uploaded file" and uploaded_file is not None:
|
52 |
if uploaded_file.name.endswith(".txt"):
|
53 |
data = [uploaded_file.read().decode("utf-8")]
|
54 |
elif uploaded_file.name.endswith(".csv"):
|
|
|
55 |
df = pd.read_csv(uploaded_file)
|
56 |
+
data = df[df.columns[0]].astype(str).tolist() # Ensure all data is string
|
57 |
+
else:
|
58 |
+
data = ["Unsupported file format."]
|
59 |
else:
|
60 |
data = ["No file uploaded. Please upload a dataset."]
|
61 |
|
62 |
dataset = prepare_dataset(data, tokenizer)
|
63 |
return dataset
|
64 |
|
65 |
+
# Train Model Function
|
66 |
+
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4, use_ga=False, ga_params=None):
|
67 |
+
if not use_ga:
|
68 |
+
training_args = TrainingArguments(
|
69 |
+
output_dir="./results",
|
70 |
+
overwrite_output_dir=True,
|
71 |
+
num_train_epochs=epochs,
|
72 |
+
per_device_train_batch_size=batch_size,
|
73 |
+
save_steps=10_000,
|
74 |
+
save_total_limit=2,
|
75 |
+
logging_dir="./logs",
|
76 |
+
logging_steps=1,
|
77 |
+
logging_strategy='steps',
|
78 |
+
report_to=None, # Disable default logging to WandB or other services
|
79 |
+
)
|
80 |
+
|
81 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
82 |
+
|
83 |
+
trainer = Trainer(
|
84 |
+
model=model,
|
85 |
+
args=training_args,
|
86 |
+
data_collator=data_collator,
|
87 |
+
train_dataset=train_dataset,
|
88 |
+
)
|
89 |
+
trainer.train()
|
90 |
+
return trainer.state.log_history
|
91 |
+
else:
|
92 |
+
# GA training logic
|
93 |
+
param_bounds = {
|
94 |
+
'learning_rate': (1e-5, 5e-5),
|
95 |
+
'epochs': (1, ga_params['max_epochs']),
|
96 |
+
'batch_size': [2, 4, 8, 16]
|
97 |
+
}
|
98 |
|
99 |
+
population = create_ga_population(ga_params['population_size'], param_bounds)
|
100 |
+
best_individual = None
|
101 |
+
best_fitness = float('inf')
|
102 |
+
all_losses = []
|
|
|
|
|
|
|
103 |
|
104 |
+
for generation in range(ga_params['num_generations']):
|
105 |
+
fitnesses = []
|
106 |
+
for idx, individual in enumerate(population):
|
107 |
+
model_copy = GPT2LMHeadModel.from_pretrained('gpt2')
|
108 |
+
training_args = TrainingArguments(
|
109 |
+
output_dir=f"./results/ga_{generation}_{idx}",
|
110 |
+
num_train_epochs=individual['epochs'],
|
111 |
+
per_device_train_batch_size=individual['batch_size'],
|
112 |
+
learning_rate=individual['learning_rate'],
|
113 |
+
logging_steps=1,
|
114 |
+
logging_strategy='steps',
|
115 |
+
report_to=None, # Disable default logging to WandB or other services
|
116 |
+
)
|
117 |
|
118 |
+
trainer = Trainer(
|
119 |
+
model=model_copy,
|
120 |
+
args=training_args,
|
121 |
+
train_dataset=train_dataset,
|
122 |
+
)
|
123 |
|
124 |
+
# Capture the training result
|
125 |
+
train_result = trainer.train()
|
126 |
+
|
127 |
+
# Safely retrieve the training loss
|
128 |
+
fitness = train_result.metrics.get('train_loss', None)
|
129 |
+
if fitness is None:
|
130 |
+
# If 'train_loss' is not available, try to compute it from log history
|
131 |
+
if 'loss' in trainer.state.log_history[-1]:
|
132 |
+
fitness = trainer.state.log_history[-1]['loss']
|
133 |
+
else:
|
134 |
+
fitness = float('inf') # Assign a large number if loss is not available
|
135 |
+
|
136 |
+
fitnesses.append(fitness)
|
137 |
+
all_losses.extend(trainer.state.log_history)
|
138 |
+
|
139 |
+
if fitness < best_fitness:
|
140 |
+
best_fitness = fitness
|
141 |
+
best_individual = individual
|
142 |
+
model.load_state_dict(model_copy.state_dict())
|
143 |
+
|
144 |
+
del model_copy
|
145 |
+
torch.cuda.empty_cache()
|
146 |
+
|
147 |
+
# GA operations
|
148 |
+
parents = select_ga_parents(population, fitnesses, ga_params['num_parents'])
|
149 |
+
offspring_size = ga_params['population_size'] - ga_params['num_parents']
|
150 |
+
offspring = ga_crossover(parents, offspring_size)
|
151 |
+
offspring = ga_mutation(offspring, param_bounds, ga_params['mutation_rate'])
|
152 |
+
population = parents + offspring
|
153 |
+
|
154 |
+
return all_losses
|
155 |
+
|
156 |
+
# GA-related functions
|
157 |
+
def create_ga_population(size: int, param_bounds: Dict[str, Any]) -> List[Dict[str, Any]]:
|
158 |
+
"""Create initial population for genetic algorithm"""
|
159 |
+
population = []
|
160 |
+
for _ in range(size):
|
161 |
+
individual = {
|
162 |
+
'learning_rate': random.uniform(*param_bounds['learning_rate']),
|
163 |
+
'epochs': random.randint(*param_bounds['epochs']),
|
164 |
+
'batch_size': random.choice(param_bounds['batch_size']),
|
165 |
+
}
|
166 |
+
population.append(individual)
|
167 |
+
return population
|
168 |
+
|
169 |
+
def select_ga_parents(population: List[Dict[str, Any]], fitnesses: List[float], num_parents: int) -> List[Dict[str, Any]]:
|
170 |
+
"""Select best performing individuals as parents"""
|
171 |
+
parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
|
172 |
+
return parents
|
173 |
+
|
174 |
+
def ga_crossover(parents: List[Dict[str, Any]], offspring_size: int) -> List[Dict[str, Any]]:
|
175 |
+
"""Create offspring through crossover of parents"""
|
176 |
+
offspring = []
|
177 |
+
for _ in range(offspring_size):
|
178 |
+
parent1 = random.choice(parents)
|
179 |
+
parent2 = random.choice(parents)
|
180 |
+
child = {
|
181 |
+
'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
|
182 |
+
'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
|
183 |
+
'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
|
184 |
+
}
|
185 |
+
offspring.append(child)
|
186 |
+
return offspring
|
187 |
+
|
188 |
+
def ga_mutation(offspring: List[Dict[str, Any]], param_bounds: Dict[str, Any], mutation_rate: float = 0.1) -> List[Dict[str, Any]]:
|
189 |
+
"""Apply random mutations to offspring"""
|
190 |
+
for individual in offspring:
|
191 |
+
if random.random() < mutation_rate:
|
192 |
+
individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
|
193 |
+
if random.random() < mutation_rate:
|
194 |
+
individual['epochs'] = random.randint(*param_bounds['epochs'])
|
195 |
+
if random.random() < mutation_rate:
|
196 |
+
individual['batch_size'] = random.choice(param_bounds['batch_size'])
|
197 |
+
return offspring
|
198 |
|
199 |
# Main App Logic
|
200 |
def main():
|
201 |
setup_cyberpunk_style()
|
202 |
st.markdown('<h1 class="main-title">Neural Training Hub</h1>', unsafe_allow_html=True)
|
203 |
|
|
|
|
|
|
|
204 |
# Sidebar Configuration with Additional Options
|
205 |
with st.sidebar:
|
206 |
st.markdown("### Configuration Panel")
|
|
|
211 |
api = HfApi()
|
212 |
api.set_access_token(hf_token)
|
213 |
st.success("Hugging Face token added successfully!")
|
214 |
+
|
215 |
# Training Parameters
|
216 |
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
|
217 |
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
|
|
|
221 |
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
|
222 |
uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
|
223 |
|
224 |
+
custom_learning_rate = st.number_input("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6, format="%.6f")
|
225 |
+
|
226 |
# Advanced Settings Toggle
|
227 |
advanced_toggle = st.checkbox("Advanced Training Settings")
|
228 |
if advanced_toggle:
|
|
|
231 |
else:
|
232 |
warmup_steps = 100
|
233 |
weight_decay = 0.01
|
234 |
+
|
235 |
+
# Add training method selection
|
236 |
+
training_method = st.selectbox("Training Method", ("Standard", "Genetic Algorithm"))
|
237 |
+
|
238 |
+
if training_method == "Genetic Algorithm":
|
239 |
+
st.markdown("### GA Parameters")
|
240 |
+
ga_params = {
|
241 |
+
'population_size': st.slider("Population Size", min_value=4, max_value=10, value=6),
|
242 |
+
'num_generations': st.slider("Number of Generations", min_value=1, max_value=5, value=3),
|
243 |
+
'num_parents': st.slider("Number of Parents", min_value=2, max_value=4, value=2),
|
244 |
+
'mutation_rate': st.slider("Mutation Rate", min_value=0.0, max_value=1.0, value=0.1),
|
245 |
+
'max_epochs': training_epochs
|
246 |
+
}
|
247 |
+
else:
|
248 |
+
ga_params = None
|
249 |
+
|
250 |
+
# Initialize model and tokenizer
|
251 |
+
if 'model' not in st.session_state:
|
252 |
+
model, tokenizer = initialize_model(model_name=model_choice)
|
253 |
+
st.session_state['model'] = model
|
254 |
+
st.session_state['tokenizer'] = tokenizer
|
255 |
+
st.session_state['model_name'] = model_choice
|
256 |
+
else:
|
257 |
+
if st.session_state.get('model_name') != model_choice:
|
258 |
+
model, tokenizer = initialize_model(model_name=model_choice)
|
259 |
+
st.session_state['model'] = model
|
260 |
+
st.session_state['tokenizer'] = tokenizer
|
261 |
+
st.session_state['model_name'] = model_choice
|
262 |
+
else:
|
263 |
+
model = st.session_state['model']
|
264 |
+
tokenizer = st.session_state['tokenizer']
|
265 |
|
266 |
# Load Dataset
|
267 |
train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# Go Button to Start Training
|
270 |
if st.button("Go"):
|
|
|
|
|
271 |
st.markdown("### Model Training Progress")
|
272 |
+
progress_bar = st.progress(0)
|
273 |
+
status_text = st.empty()
|
274 |
+
status_text.text("Training in progress...")
|
275 |
+
|
276 |
+
# Train the model
|
277 |
+
if training_method == "Standard":
|
278 |
+
logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size)
|
279 |
+
else:
|
280 |
+
logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size, use_ga=True, ga_params=ga_params)
|
281 |
|
282 |
+
# Update progress bar to 100%
|
283 |
+
progress_bar.progress(100)
|
284 |
+
status_text.text("Training complete!")
|
285 |
|
286 |
+
# Store the model and logs in st.session_state
|
287 |
+
st.session_state['model'] = model
|
288 |
+
st.session_state['logs'] = logs
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
# Plot the losses if available
|
291 |
+
if 'logs' in st.session_state:
|
292 |
+
logs = st.session_state['logs']
|
293 |
+
losses = [log['loss'] for log in logs if 'loss' in log]
|
294 |
+
steps = list(range(len(losses)))
|
295 |
+
if losses:
|
296 |
+
# Plot the losses
|
297 |
+
fig = go.Figure()
|
298 |
+
fig.add_trace(go.Scatter(x=steps, y=losses, mode='lines+markers', name='Training Loss', line=dict(color='#00ff9d')))
|
299 |
+
fig.update_layout(
|
300 |
+
title="Training Progress",
|
301 |
+
xaxis_title="Training Steps",
|
302 |
+
yaxis_title="Loss",
|
303 |
+
template="plotly_dark",
|
304 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
305 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
306 |
+
font=dict(color='#00ff9d')
|
307 |
+
)
|
308 |
+
st.plotly_chart(fig, use_container_width=True)
|
309 |
+
else:
|
310 |
+
st.write("No loss data available to plot.")
|
311 |
+
else:
|
312 |
+
st.write("Train the model to see the loss plot.")
|
313 |
+
|
314 |
+
# After training, you can use the model for inference
|
315 |
+
st.markdown("### Model Inference")
|
316 |
+
with st.form("inference_form"):
|
317 |
+
user_input = st.text_input("Enter prompt for the model:")
|
318 |
+
submitted = st.form_submit_button("Generate")
|
319 |
+
if submitted:
|
320 |
+
if 'model' in st.session_state:
|
321 |
+
model = st.session_state['model']
|
322 |
+
tokenizer = st.session_state['tokenizer']
|
323 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
324 |
+
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1)
|
325 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
326 |
+
st.write("Model output:", response)
|
327 |
+
else:
|
328 |
+
st.write("Please train the model first.")
|
329 |
|
330 |
if __name__ == "__main__":
|
331 |
main()
|