STAR / video_to_video /video_to_video_model.py
xierui.0097
Add application file
f0e9666
raw
history blame
7.03 kB
import os
import os.path as osp
import random
from typing import Any, Dict
import torch
import torch.cuda.amp as amp
import torch.nn.functional as F
from video_to_video.modules import *
from video_to_video.utils.config import cfg
from video_to_video.diffusion.diffusion_sdedit import GaussianDiffusion
from video_to_video.diffusion.schedules_sdedit import noise_schedule
from video_to_video.utils.logger import get_logger
from diffusers import AutoencoderKLTemporalDecoder
logger = get_logger()
class VideoToVideo_sr():
def __init__(self, opt, device=torch.device(f'cuda:0')):
self.opt = opt
self.device = device # torch.device(f'cuda:0')
# text_encoder
text_encoder = FrozenOpenCLIPEmbedder(device=self.device, pretrained="laion2b_s32b_b79k")
text_encoder.model.to(self.device)
self.text_encoder = text_encoder
logger.info(f'Build encoder with FrozenOpenCLIPEmbedder')
# U-Net with ControlNet
generator = ControlledV2VUNet()
generator = generator.to(self.device)
generator.eval()
cfg.model_path = opt.model_path
load_dict = torch.load(cfg.model_path, map_location='cpu')
if 'state_dict' in load_dict:
load_dict = load_dict['state_dict']
ret = generator.load_state_dict(load_dict, strict=False)
self.generator = generator.half()
logger.info('Load model path {}, with local status {}'.format(cfg.model_path, ret))
# Noise scheduler
sigmas = noise_schedule(
schedule='logsnr_cosine_interp',
n=1000,
zero_terminal_snr=True,
scale_min=2.0,
scale_max=4.0)
diffusion = GaussianDiffusion(sigmas=sigmas)
self.diffusion = diffusion
logger.info('Build diffusion with GaussianDiffusion')
# Temporal VAE
vae = AutoencoderKLTemporalDecoder.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", subfolder="vae", variant="fp16"
)
vae.eval()
vae.requires_grad_(False)
vae.to(self.device)
self.vae = vae
logger.info('Build Temporal VAE')
torch.cuda.empty_cache()
self.negative_prompt = cfg.negative_prompt
self.positive_prompt = cfg.positive_prompt
negative_y = text_encoder(self.negative_prompt).detach()
self.negative_y = negative_y
def test(self, input: Dict[str, Any], total_noise_levels=1000, \
steps=50, solver_mode='fast', guide_scale=7.5, max_chunk_len=32):
video_data = input['video_data']
y = input['y']
(target_h, target_w) = input['target_res']
video_data = F.interpolate(video_data, [target_h,target_w], mode='bilinear')
logger.info(f'video_data shape: {video_data.shape}')
frames_num, _, h, w = video_data.shape
padding = pad_to_fit(h, w)
video_data = F.pad(video_data, padding, 'constant', 1)
video_data = video_data.unsqueeze(0)
bs = 1
video_data = video_data.to(self.device)
video_data_feature = self.vae_encode(video_data)
torch.cuda.empty_cache()
y = self.text_encoder(y).detach()
with amp.autocast(enabled=True):
t = torch.LongTensor([total_noise_levels-1]).to(self.device)
noised_lr = self.diffusion.diffuse(video_data_feature, t)
model_kwargs = [{'y': y}, {'y': self.negative_y}]
model_kwargs.append({'hint': video_data_feature})
torch.cuda.empty_cache()
chunk_inds = make_chunks(frames_num, interp_f_num=0, max_chunk_len=max_chunk_len) if frames_num > max_chunk_len else None
solver = 'dpmpp_2m_sde' # 'heun' | 'dpmpp_2m_sde'
gen_vid = self.diffusion.sample_sr(
noise=noised_lr,
model=self.generator,
model_kwargs=model_kwargs,
guide_scale=guide_scale,
guide_rescale=0.2,
solver=solver,
solver_mode=solver_mode,
return_intermediate=None,
steps=steps,
t_max=total_noise_levels - 1,
t_min=0,
discretization='trailing',
chunk_inds=chunk_inds,)
torch.cuda.empty_cache()
logger.info(f'sampling, finished.')
vid_tensor_gen = self.vae_decode_chunk(gen_vid, chunk_size=3)
logger.info(f'temporal vae decoding, finished.')
w1, w2, h1, h2 = padding
vid_tensor_gen = vid_tensor_gen[:,:,h1:h+h1,w1:w+w1]
gen_video = rearrange(
vid_tensor_gen, '(b f) c h w -> b c f h w', b=bs)
torch.cuda.empty_cache()
return gen_video.type(torch.float32).cpu()
def temporal_vae_decode(self, z, num_f):
return self.vae.decode(z/self.vae.config.scaling_factor, num_frames=num_f).sample
def vae_decode_chunk(self, z, chunk_size=3):
z = rearrange(z, "b c f h w -> (b f) c h w")
video = []
for ind in range(0, z.shape[0], chunk_size):
num_f = z[ind:ind+chunk_size].shape[0]
video.append(self.temporal_vae_decode(z[ind:ind+chunk_size],num_f))
video = torch.cat(video)
return video
def vae_encode(self, t, chunk_size=1):
num_f = t.shape[1]
t = rearrange(t, "b f c h w -> (b f) c h w")
z_list = []
for ind in range(0,t.shape[0],chunk_size):
z_list.append(self.vae.encode(t[ind:ind+chunk_size]).latent_dist.sample())
z = torch.cat(z_list, dim=0)
z = rearrange(z, "(b f) c h w -> b c f h w", f=num_f)
return z * self.vae.config.scaling_factor
def pad_to_fit(h, w):
BEST_H, BEST_W = 720, 1280
if h < BEST_H:
h1, h2 = _create_pad(h, BEST_H)
elif h == BEST_H:
h1 = h2 = 0
else:
h1 = 0
h2 = int((h + 48) // 64 * 64) + 64 - 48 - h
if w < BEST_W:
w1, w2 = _create_pad(w, BEST_W)
elif w == BEST_W:
w1 = w2 = 0
else:
w1 = 0
w2 = int(w // 64 * 64) + 64 - w
return (w1, w2, h1, h2)
def _create_pad(h, max_len):
h1 = int((max_len - h) // 2)
h2 = max_len - h1 - h
return h1, h2
def make_chunks(f_num, interp_f_num, max_chunk_len, chunk_overlap_ratio=0.5):
MAX_CHUNK_LEN = max_chunk_len
MAX_O_LEN = MAX_CHUNK_LEN * chunk_overlap_ratio
chunk_len = int((MAX_CHUNK_LEN-1)//(1+interp_f_num)*(interp_f_num+1)+1)
o_len = int((MAX_O_LEN-1)//(1+interp_f_num)*(interp_f_num+1)+1)
chunk_inds = sliding_windows_1d(f_num, chunk_len, o_len)
return chunk_inds
def sliding_windows_1d(length, window_size, overlap_size):
stride = window_size - overlap_size
ind = 0
coords = []
while ind<length:
if ind+window_size*1.25>=length:
coords.append((ind,length))
break
else:
coords.append((ind,ind+window_size))
ind += stride
return coords