Candidate_Selection / Readme.md
Shiv1143's picture
Upload 6 files
8adda05 verified

A newer version of the Streamlit SDK is available: 1.41.1

Upgrade

SelectRight

Overview

This project aims to rank candidates for a role by comparing their resumes and interview transcripts using a language model.

Folder Structure

MLE_Trial_Task/
β”œβ”€β”€ data/
β”‚   └── candidates.csv (optional, can be uploaded via the app)
β”œβ”€β”€ core_services/
β”‚   └── bot9_ai/
β”‚       └── modules/
β”‚           └── LLM/
β”‚               └── OpenAi.py
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ data_preparation.py
β”‚   β”œβ”€β”€ model.py
β”‚   β”œβ”€β”€ evaluation.py
β”‚   β”œβ”€β”€ bias_analysis.py
β”‚   └── report_generation.py
β”œβ”€β”€ app.py
β”œβ”€β”€ requirements.txt
└── README.md

Setup

  1. Clone the repository.
  2. Install the required dependencies:
    pip install -r requirements.txt
    
  3. Run the Streamlit app:
    streamlit run app.py
    

Files

  • data/candidates.csv: The dataset file (optional, can be uploaded via the app).
  • llmservice/OpenAi.py: Contains the OpenAi class.
  • src/data_preparation.py: Script for loading the dataset.
  • src/model.py: Script for defining the model.
  • src/evaluation.py: Script for evaluating the model.
  • src/bias_analysis.py: Script for analyzing biases.
  • src/report_generation.py: Script for generating the report.
  • app.py: Streamlit app script.
  • requirements.txt: List of dependencies.
  • README.md: Project overview and setup instructions.