Spaces:
Paused
Paused
File size: 32,863 Bytes
d0388f2 7d20787 d56e797 7d20787 70e402f 7d20787 d0388f2 7d20787 d0388f2 7d20787 8fcdb06 7d20787 615a9b7 7d20787 6905d6d 7d20787 d0388f2 7d20787 d0388f2 7d20787 d0388f2 7d20787 0a69d83 7d20787 70e402f 7d20787 83a84c1 7d20787 f1e2207 7d20787 83a84c1 7d20787 d0388f2 7d20787 ca9bb83 97c6d6a 7d20787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List, Dict
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from huggingface_hub import InferenceClient
import inspect
import logging
import shutil
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"@cf/meta/llama-3.1-8b-instruct",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"mattshumer/Reflection-Llama-3.1-70B",
"duckduckgo/gpt-4o-mini",
"duckduckgo/claude-3-haiku",
"duckduckgo/llama-3.1-70b",
"duckduckgo/mixtral-8x7b"
]
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0")
# Add this at the beginning of your script, after imports
DOCUMENTS_FILE = "uploaded_documents.json"
def load_documents():
if os.path.exists(DOCUMENTS_FILE):
with open(DOCUMENTS_FILE, "r") as f:
return json.load(f)
return []
def save_documents(documents):
with open(DOCUMENTS_FILE, "w") as f:
json.dump(documents, f)
# Replace the global uploaded_documents with this
uploaded_documents = load_documents()
# Modify the update_vectors function
def update_vectors(files, parser):
global uploaded_documents
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
if not files:
logging.warning("No files provided for update_vectors")
return "Please upload at least one PDF file.", display_documents()
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
logging.info(f"Processing file: {file.name}")
try:
data = load_document(file, parser)
if not data:
logging.warning(f"No chunks loaded from {file.name}")
continue
logging.info(f"Loaded {len(data)} chunks from {file.name}")
all_data.extend(data)
total_chunks += len(data)
if not any(doc["name"] == file.name for doc in uploaded_documents):
uploaded_documents.append({"name": file.name, "selected": True})
logging.info(f"Added new document to uploaded_documents: {file.name}")
else:
logging.info(f"Document already exists in uploaded_documents: {file.name}")
except Exception as e:
logging.error(f"Error processing file {file.name}: {str(e)}")
logging.info(f"Total chunks processed: {total_chunks}")
if not all_data:
logging.warning("No valid data extracted from uploaded files")
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
try:
if os.path.exists("faiss_database"):
logging.info("Updating existing FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
logging.info("Creating new FAISS database")
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
logging.info("FAISS database saved")
except Exception as e:
logging.error(f"Error updating FAISS database: {str(e)}")
return f"Error updating vector store: {str(e)}", display_documents()
# Save the updated list of documents
save_documents(uploaded_documents)
# Return a tuple with the status message and the updated document list
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
def delete_documents(selected_docs):
global uploaded_documents
if not selected_docs:
return "No documents selected for deletion.", display_documents()
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
deleted_docs = []
docs_to_keep = []
for doc in database.docstore._dict.values():
if doc.metadata.get("source") not in selected_docs:
docs_to_keep.append(doc)
else:
deleted_docs.append(doc.metadata.get("source", "Unknown"))
# Print debugging information
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
logging.info(f"Documents to keep: {len(docs_to_keep)}")
logging.info(f"Documents to delete: {len(deleted_docs)}")
if not docs_to_keep:
# If all documents are deleted, remove the FAISS database directory
if os.path.exists("faiss_database"):
shutil.rmtree("faiss_database")
logging.info("All documents deleted. Removed FAISS database directory.")
else:
# Create new FAISS index with remaining documents
new_database = FAISS.from_documents(docs_to_keep, embed)
new_database.save_local("faiss_database")
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
# Update uploaded_documents list
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
save_documents(uploaded_documents)
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
print(f"Starting generate_chunked_response with {num_calls} calls")
full_response = ""
messages = [{"role": "user", "content": prompt}]
if model == "@cf/meta/llama-3.1-8b-instruct":
# Cloudflare API
for i in range(num_calls):
print(f"Starting Cloudflare API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
response = requests.post(
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
headers={"Authorization": f"Bearer {API_TOKEN}"},
json={
"stream": true,
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
],
"max_tokens": max_tokens,
"temperature": temperature
},
stream=true
)
for line in response.iter_lines():
if should_stop:
print("Stop clicked during streaming, breaking")
break
if line:
try:
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
chunk = json_data['response']
full_response += chunk
except json.JSONDecodeError:
continue
print(f"Cloudflare API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Cloudflare: {str(e)}")
else:
# Original Hugging Face API logic
client = InferenceClient(model, token=huggingface_token)
for i in range(num_calls):
print(f"Starting Hugging Face API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=True,
):
if should_stop:
print("Stop clicked during streaming, breaking")
break
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
full_response += chunk
print(f"Hugging Face API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Hugging Face: {str(e)}")
# Clean up the response
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
clean_response = clean_response.replace("Using the following context:", "").strip()
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
# Remove duplicate paragraphs and sentences
paragraphs = clean_response.split('\n\n')
unique_paragraphs = []
for paragraph in paragraphs:
if paragraph not in unique_paragraphs:
sentences = paragraph.split('. ')
unique_sentences = []
for sentence in sentences:
if sentence not in unique_sentences:
unique_sentences.append(sentence)
unique_paragraphs.append('. '.join(unique_sentences))
final_response = '\n\n'.join(unique_paragraphs)
print(f"Final clean response: {final_response[:100]}...")
return final_response
def chatbot_interface(message, history, model, temperature, num_calls):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, model, temperature, num_calls):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, model, temperature, num_calls)
def truncate_context(context, max_length=16000):
"""Truncate the context to a maximum length."""
if len(context) <= max_length:
return context
return context[:max_length] + "..."
def get_response_from_duckduckgo(query, model, context, num_calls=1, temperature=0.2):
logging.info(f"Using DuckDuckGo chat with model: {model}")
ddg_model = model.split('/')[-1] # Extract the model name from the full string
# Truncate the context to avoid exceeding input limits
truncated_context = truncate_context(context)
full_response = ""
for _ in range(num_calls):
try:
# Include truncated context in the query
contextualized_query = f"Using the following context:\n{truncated_context}\n\nUser question: {query}"
results = DDGS().chat(contextualized_query, model=ddg_model)
full_response += results + "\n"
logging.info(f"DuckDuckGo API response received. Length: {len(results)}")
except Exception as e:
logging.error(f"Error in generating response from DuckDuckGo: {str(e)}")
yield f"An error occurred with the {model} model: {str(e)}. Please try again."
return
yield full_response.strip()
class ConversationManager:
def __init__(self):
self.history = []
self.current_context = None
def add_interaction(self, query, response):
self.history.append((query, response))
self.current_context = f"Previous query: {query}\nPrevious response summary: {response[:200]}..."
def get_context(self):
return self.current_context
conversation_manager = ConversationManager()
def get_web_search_results(query: str, max_results: int = 10) -> List[Dict[str, str]]:
try:
results = list(DDGS().text(query, max_results=max_results))
if not results:
print(f"No results found for query: {query}")
return results
except Exception as e:
print(f"An error occurred during web search: {str(e)}")
return [{"error": f"An error occurred during web search: {str(e)}"}]
def rephrase_query(original_query: str, conversation_manager: ConversationManager) -> str:
context = conversation_manager.get_context()
if context:
prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
4. Provide ONLY the rephrased query without any additional explanation or reasoning.
Context: {context}
New query: {original_query}
Rephrased query:"""
response = DDGS().chat(prompt, model="llama-3.1-70b")
rephrased_query = response.split('\n')[0].strip()
return rephrased_query
return original_query
def summarize_web_results(query: str, search_results: List[Dict[str, str]], conversation_manager: ConversationManager) -> str:
try:
context = conversation_manager.get_context()
search_context = "\n\n".join([f"Title: {result['title']}\nContent: {result['body']}" for result in search_results])
prompt = f"""You are a highly intelligent & expert analyst and your job is to skillfully articulate the web search results about '{query}' and considering the context: {context},
You have to create a comprehensive news summary FOCUSING on the context provided to you.
Include key facts, relevant statistics, and expert opinions if available.
Ensure the article is well-structured with an introduction, main body, and conclusion, IF NECESSARY.
Address the query in the context of the ongoing conversation IF APPLICABLE.
Cite sources directly within the generated text and not at the end of the generated text, integrating URLs where appropriate to support the information provided:
{search_context}
Article:"""
summary = DDGS().chat(prompt, model="llama-3.1-70b")
return summary
except Exception as e:
return f"An error occurred during summarization: {str(e)}"
# Modify the existing respond function to handle both PDF and web search
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Selected Documents: {selected_docs}")
logging.info(f"Use Web Search: {use_web_search}")
if use_web_search:
original_query = message
rephrased_query = rephrase_query(message, conversation_manager)
logging.info(f"Original query: {original_query}")
logging.info(f"Rephrased query: {rephrased_query}")
final_summary = ""
for _ in range(num_calls):
search_results = get_web_search_results(rephrased_query)
if not search_results:
final_summary += f"No search results found for the query: {rephrased_query}\n\n"
elif "error" in search_results[0]:
final_summary += search_results[0]["error"] + "\n\n"
else:
summary = summarize_web_results(rephrased_query, search_results, conversation_manager)
final_summary += summary + "\n\n"
if final_summary:
conversation_manager.add_interaction(original_query, final_summary)
yield final_summary
else:
yield "Unable to generate a response. Please try a different query."
else:
# Existing PDF search logic
try:
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever(search_kwargs={"k": 20})
all_relevant_docs = retriever.get_relevant_documents(message)
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
if not relevant_docs:
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
context_str = "\n".join([doc.page_content for doc in relevant_docs])
logging.info(f"Context length: {len(context_str)}")
else:
context_str = "No documents available."
yield "No documents available. Please upload PDF documents to answer questions."
return
if model.startswith("duckduckgo/"):
# Use DuckDuckGo chat with context
for partial_response in get_response_from_duckduckgo(message, model, context_str, num_calls, temperature):
yield partial_response
elif model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
yield partial_response
else:
# Use Hugging Face API
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
yield partial_response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
if "microsoft/Phi-3-mini-4k-instruct" in model:
logging.info("Falling back to Mistral model due to Phi-3 error")
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
yield from respond(message, history, fallback_model, temperature, num_calls, selected_docs)
else:
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
logging.basicConfig(level=logging.DEBUG)
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
model = "@cf/meta/llama-3.1-8b-instruct"
if search_type == "pdf":
instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
else: # web search
instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
inputs = [
{"role": "system", "content": instruction},
{"role": "user", "content": query}
]
payload = {
"messages": inputs,
"stream": True,
"temperature": temperature,
"max_tokens": 32000
}
full_response = ""
for i in range(num_calls):
try:
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
if response.status_code == 200:
for line in response.iter_lines():
if line:
try:
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
if 'response' in json_response:
chunk = json_response['response']
full_response += chunk
yield full_response
except (json.JSONDecodeError, IndexError) as e:
logging.error(f"Error parsing streaming response: {str(e)}")
continue
else:
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
except Exception as e:
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
if not full_response:
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
embed = get_embeddings()
if os.path.exists("faiss_database"):
logging.info("Loading FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
logging.warning("No FAISS database found")
yield "No documents available. Please upload PDF documents to answer questions."
return
# Pre-filter the documents
filtered_docs = []
for doc_id, doc in database.docstore._dict.items():
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
filtered_docs.append(doc)
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")
if not filtered_docs:
logging.warning(f"No documents found for the selected sources: {selected_docs}")
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
# Create a new FAISS index with only the selected documents
filtered_db = FAISS.from_documents(filtered_docs, embed)
retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
logging.info(f"Retrieving relevant documents for query: {query}")
relevant_docs = retriever.get_relevant_documents(query)
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
for doc in relevant_docs:
logging.info(f"Document source: {doc.metadata['source']}")
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
context_str = "\n".join([doc.page_content for doc in relevant_docs])
logging.info(f"Total context length: {len(context_str)}")
if model == "@cf/meta/llama-3.1-8b-instruct":
logging.info("Using Cloudflare API")
# Use Cloudflare API with the retrieved context
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
yield response
else:
logging.info("Using Hugging Face API")
# Use Hugging Face API
prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
client = InferenceClient(model, token=huggingface_token)
response = ""
for i in range(num_calls):
logging.info(f"API call {i+1}/{num_calls}")
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
response += chunk
yield response # Yield partial response
logging.info("Finished generating response")
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
uploaded_documents = []
def display_documents():
return gr.CheckboxGroup(
choices=[doc["name"] for doc in uploaded_documents],
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
label="Select documents to query or delete"
)
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
"2. Use web search to find information\n"
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
"4. For any queries feel free to reach out @desai.shreyas94@gmail.com or discord - shreyas094\n\n"
"To get started, upload some PDFs or ask me a question!")
]
# Add this new function
def refresh_documents():
global uploaded_documents
uploaded_documents = load_documents()
return display_documents()
# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
# Update the demo interface
# Update the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Web Search", value=True),
gr.CheckboxGroup(label="Select documents to query")
],
title="AI-powered PDF Chat and Web Search Assistant",
description="Chat with your PDFs or use web search to answer questions.",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["Tell me about the contents of the uploaded PDFs."],
["What are the main topics discussed in the documents?"],
["Can you summarize the key points from the PDFs?"],
["What's the latest news about artificial intelligence?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDFs or any topic", container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
# Add file upload functionality
# Add file upload functionality
with demo:
gr.Markdown("## Upload and Manage PDF Documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
update_button = gr.Button("Upload Document")
refresh_button = gr.Button("Refresh Document List")
update_output = gr.Textbox(label="Update Status")
delete_button = gr.Button("Delete Selected Documents")
# Update both the output text and the document selector
update_button.click(
update_vectors,
inputs=[file_input, parser_dropdown],
outputs=[update_output, demo.additional_inputs[-1]] # Use the CheckboxGroup from additional_inputs
)
# Add the refresh button functionality
refresh_button.click(
refresh_documents,
inputs=[],
outputs=[demo.additional_inputs[-1]] # Use the CheckboxGroup from additional_inputs
)
# Add the delete button functionality
delete_button.click(
delete_documents,
inputs=[demo.additional_inputs[-1]], # Use the CheckboxGroup from additional_inputs
outputs=[update_output, demo.additional_inputs[-1]]
)
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Select the documents you want to query using the checkboxes.
4. Ask questions in the chat interface.
5. Toggle "Use Web Search" to switch between PDF chat and web search.
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
7. Use the provided examples or ask your own questions.
"""
)
if __name__ == "__main__":
demo.launch(share=True) |