Spaces:
Runtime error
Runtime error
title: Composable-Diffusion | |
sdk: gradio | |
sdk_version: 3.12.0 | |
app_file: app.py | |
pinned: true | |
# Composable Diffusion | |
**Compositional Visual Generation with Composable Diffusion Models (ECCV 2022)** | |
**[Webpage](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | [GitHub](https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch)** | |
## Overview | |
We propose to use **conjunction and negation** (negative prompts) operators for **compositional generation with conditional diffusion models in test time without any training**. | |
For more details, please refer to our paper: | |
[Compositional Visual Generation with Composable Diffusion Models](https://arxiv.org/abs/2206.01714).<br> | |
[Nan Liu](https://nanliu.io)*\, [Shuang Li](https://people.csail.mit.edu/lishuang)*\, [Yilun Du](https://yilundu.github.io)*\, [Antonio Torralba](https://groups.csail.mit.edu/vision/torralbalab/), [Joshua B. Tenenbaum](https://mitibmwatsonailab.mit.edu/people/joshua-tenenbaum/), **ECCV 2022** | |
## Citation | |
If you find our paper useful in your research, please cite the following paper: | |
``` latex | |
@article{liu2022compositional, | |
title={Compositional Visual Generation with Composable Diffusion Models}, | |
author={Liu, Nan and Li, Shuang and Du, Yilun and Torralba, Antonio and Tenenbaum, Joshua B}, | |
journal={arXiv preprint arXiv:2206.01714}, | |
year={2022} | |
} | |
``` | |