File size: 6,355 Bytes
d061c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from diffusers.image_processor import VaeImageProcessor
from torch.nn import functional as F
import cv2
import utils
from rife.pytorch_msssim import ssim_matlab
import numpy as np
import logging
import skvideo.io
from rife.RIFE_HDv3 import Model
from huggingface_hub import hf_hub_download, snapshot_download
logger = logging.getLogger(__name__)

device = "cuda" if torch.cuda.is_available() else "cpu"


def pad_image(img, scale):
    _, _, h, w = img.shape
    tmp = max(32, int(32 / scale))
    ph = ((h - 1) // tmp + 1) * tmp
    pw = ((w - 1) // tmp + 1) * tmp
    padding = (0,  pw - w, 0, ph - h)
    return F.pad(img, padding), padding


def make_inference(model, I0, I1, upscale_amount, n):
    middle = model.inference(I0, I1, upscale_amount)
    if n == 1:
        return [middle]
    first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2)
    second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2)
    if n % 2:
        return [*first_half, middle, *second_half]
    else:
        return [*first_half, *second_half]


@torch.inference_mode()
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
    print(f"samples dtype:{samples.dtype}")
    print(f"samples shape:{samples.shape}")
    output = []
    pbar = utils.ProgressBar(samples.shape[0], desc="RIFE inference")
    # [f, c, h, w]
    for b in range(samples.shape[0]):
        frame = samples[b : b + 1]
        _, _, h, w = frame.shape
        
        I0 = samples[b : b + 1]
        I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
         
        I0, padding = pad_image(I0, upscale_amount)
        I0 = I0.to(torch.float)
        I1, _ = pad_image(I1, upscale_amount)
        I1 = I1.to(torch.float)
         
        # [c, h, w]
        I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
        I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)

        ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])

        if ssim > 0.996:
            I1 = samples[b : b + 1]
            # print(f'upscale_amount:{upscale_amount}')
            # print(f'ssim:{upscale_amount}')
            # print(f'I0 shape:{I0.shape}')
            # print(f'I1 shape:{I1.shape}')
            I1, padding = pad_image(I1, upscale_amount)
            # print(f'I0 shape:{I0.shape}')
            # print(f'I1 shape:{I1.shape}')
            I1 = make_inference(model, I0, I1, upscale_amount, 1)
            
            # print(f'I0 shape:{I0.shape}')
            # print(f'I1[0] shape:{I1[0].shape}') 
            I1 = I1[0]
            
            # print(f'I1[0] unpadded shape:{I1.shape}') 
            I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
            ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
            if padding[3] > 0 and padding[1] >0 :

                frame = I1[:, :, : -padding[3],:-padding[1]]
            elif padding[3] > 0:
                frame = I1[:, :, : -padding[3],:]
            elif padding[1] >0:
                frame = I1[:, :, :,:-padding[1]]
            else:
                frame = I1

        tmp_output = []
        if ssim < 0.2:
            for i in range((2**exp) - 1):
                tmp_output.append(I0)

        else:
            tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []

        frame, _ = pad_image(frame, upscale_amount)
        # print(f'frame shape:{frame.shape}')

        frame = F.interpolate(frame, size=(h, w))
        output.append(frame.to(output_device))
        for i, tmp_frame in enumerate(tmp_output): 

            # tmp_frame, _ = pad_image(tmp_frame, upscale_amount)
            tmp_frame = F.interpolate(tmp_frame, size=(h, w))
            output.append(tmp_frame.to(output_device))
        pbar.update(1)
    return output


def load_rife_model(model_path):
    model = Model()
    model.load_model(model_path, -1)
    model.eval()
    return model


# Create a generator that yields each frame, similar to cv2.VideoCapture
def frame_generator(video_capture):
    while True:
        ret, frame = video_capture.read()
        if not ret:
            break
        yield frame
    video_capture.release()


def rife_inference_with_path(model, video_path):
    # Open the video file
    video_capture = cv2.VideoCapture(video_path)
    fps = video_capture.get(cv2.CAP_PROP_FPS)  # Get the frames per second
    tot_frame = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))  # Total frames in the video
    pt_frame_data = []
    pt_frame = skvideo.io.vreader(video_path)
    # Cyclic reading of the video frames
    while video_capture.isOpened():
        ret, frame = video_capture.read()

        if not ret:
            break

        # BGR to RGB
        frame_rgb = frame[..., ::-1]
        frame_rgb = frame_rgb.copy()
        tensor = torch.from_numpy(frame_rgb).float().to("cpu", non_blocking=True).float() / 255.0
        pt_frame_data.append(
            tensor.permute(2, 0, 1)
        )  # to [c, h, w,]

    pt_frame = torch.from_numpy(np.stack(pt_frame_data))
    pt_frame = pt_frame.to(device)
    pbar = utils.ProgressBar(tot_frame, desc="RIFE inference")
    frames = ssim_interpolation_rife(model, pt_frame)
    pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])
    image_np = VaeImageProcessor.pt_to_numpy(pt_image)  # (to [49, 512, 480, 3])
    image_pil = VaeImageProcessor.numpy_to_pil(image_np)
    video_path = utils.save_video(image_pil, fps=16)
    if pbar:
        pbar.update(1)
    return video_path


def rife_inference_with_latents(model, latents):
    rife_results = []
    latents = latents.to(device)
    for i in range(latents.size(0)):
        #  [f, c, w, h]
        latent = latents[i]

        frames = ssim_interpolation_rife(model, latent)
        pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])  # (to [f, c, w, h])
        rife_results.append(pt_image)

    return torch.stack(rife_results)


# if __name__ == "__main__":
#     snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
#     model = load_rife_model("model_rife")
 
#     video_path = rife_inference_with_path(model, "/mnt/ceph/develop/jiawei/CogVideo/output/20241003_130720.mp4")
#     print(video_path)