Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .warplayer import warp | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=True, | |
), | |
nn.PReLU(out_planes), | |
) | |
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_planes), | |
nn.PReLU(out_planes), | |
) | |
class IFBlock(nn.Module): | |
def __init__(self, in_planes, c=64): | |
super(IFBlock, self).__init__() | |
self.conv0 = nn.Sequential( | |
conv(in_planes, c // 2, 3, 2, 1), | |
conv(c // 2, c, 3, 2, 1), | |
) | |
self.convblock0 = nn.Sequential(conv(c, c), conv(c, c)) | |
self.convblock1 = nn.Sequential(conv(c, c), conv(c, c)) | |
self.convblock2 = nn.Sequential(conv(c, c), conv(c, c)) | |
self.convblock3 = nn.Sequential(conv(c, c), conv(c, c)) | |
self.conv1 = nn.Sequential( | |
nn.ConvTranspose2d(c, c // 2, 4, 2, 1), | |
nn.PReLU(c // 2), | |
nn.ConvTranspose2d(c // 2, 4, 4, 2, 1), | |
) | |
self.conv2 = nn.Sequential( | |
nn.ConvTranspose2d(c, c // 2, 4, 2, 1), | |
nn.PReLU(c // 2), | |
nn.ConvTranspose2d(c // 2, 1, 4, 2, 1), | |
) | |
def forward(self, x, flow, scale=1): | |
x = F.interpolate( | |
x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False | |
) | |
flow = ( | |
F.interpolate( | |
flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False | |
) | |
* 1.0 | |
/ scale | |
) | |
feat = self.conv0(torch.cat((x, flow), 1)) | |
feat = self.convblock0(feat) + feat | |
feat = self.convblock1(feat) + feat | |
feat = self.convblock2(feat) + feat | |
feat = self.convblock3(feat) + feat | |
flow = self.conv1(feat) | |
mask = self.conv2(feat) | |
flow = ( | |
F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) | |
* scale | |
) | |
mask = F.interpolate( | |
mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False | |
) | |
return flow, mask | |
class IFNet(nn.Module): | |
def __init__(self): | |
super(IFNet, self).__init__() | |
self.block0 = IFBlock(7 + 4, c=90) | |
self.block1 = IFBlock(7 + 4, c=90) | |
self.block2 = IFBlock(7 + 4, c=90) | |
self.block_tea = IFBlock(10 + 4, c=90) | |
# self.contextnet = Contextnet() | |
# self.unet = Unet() | |
def forward(self, x, scale_list=[4, 2, 1], training=False): | |
if training == False: | |
channel = x.shape[1] // 2 | |
img0 = x[:, :channel] | |
img1 = x[:, channel:] | |
flow_list = [] | |
merged = [] | |
mask_list = [] | |
warped_img0 = img0 | |
warped_img1 = img1 | |
flow = (x[:, :4]).detach() * 0 | |
mask = (x[:, :1]).detach() * 0 | |
loss_cons = 0 | |
block = [self.block0, self.block1, self.block2] | |
for i in range(3): | |
f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i]) | |
f1, m1 = block[i]( | |
torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), | |
torch.cat((flow[:, 2:4], flow[:, :2]), 1), | |
scale=scale_list[i], | |
) | |
flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 | |
mask = mask + (m0 + (-m1)) / 2 | |
mask_list.append(mask) | |
flow_list.append(flow) | |
warped_img0 = warp(img0, flow[:, :2]) | |
warped_img1 = warp(img1, flow[:, 2:4]) | |
merged.append((warped_img0, warped_img1)) | |
""" | |
c0 = self.contextnet(img0, flow[:, :2]) | |
c1 = self.contextnet(img1, flow[:, 2:4]) | |
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) | |
res = tmp[:, 1:4] * 2 - 1 | |
""" | |
for i in range(3): | |
mask_list[i] = torch.sigmoid(mask_list[i]) | |
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) | |
# merged[i] = torch.clamp(merged[i] + res, 0, 1) | |
return flow_list, mask_list[2], merged | |