DimensionX / rife /IFNet_2R.py
ι™ˆη‘•
Add application file
d061c3e
from .refine_2R import *
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
nn.PReLU(out_planes),
)
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(
in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True,
),
nn.PReLU(out_planes),
)
class IFBlock(nn.Module):
def __init__(self, in_planes, c=64):
super(IFBlock, self).__init__()
self.conv0 = nn.Sequential(
conv(in_planes, c // 2, 3, 1, 1),
conv(c // 2, c, 3, 2, 1),
)
self.convblock = nn.Sequential(
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
)
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
def forward(self, x, flow, scale):
if scale != 1:
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
if flow != None:
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
x = torch.cat((x, flow), 1)
x = self.conv0(x)
x = self.convblock(x) + x
tmp = self.lastconv(x)
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
flow = tmp[:, :4] * scale
mask = tmp[:, 4:5]
return flow, mask
class IFNet(nn.Module):
def __init__(self):
super(IFNet, self).__init__()
self.block0 = IFBlock(6, c=240)
self.block1 = IFBlock(13 + 4, c=150)
self.block2 = IFBlock(13 + 4, c=90)
self.block_tea = IFBlock(16 + 4, c=90)
self.contextnet = Contextnet()
self.unet = Unet()
def forward(self, x, scale=[4, 2, 1], timestep=0.5):
img0 = x[:, :3]
img1 = x[:, 3:6]
gt = x[:, 6:] # In inference time, gt is None
flow_list = []
merged = []
mask_list = []
warped_img0 = img0
warped_img1 = img1
flow = None
loss_distill = 0
stu = [self.block0, self.block1, self.block2]
for i in range(3):
if flow != None:
flow_d, mask_d = stu[i](
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
)
flow = flow + flow_d
mask = mask + mask_d
else:
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
mask_list.append(torch.sigmoid(mask))
flow_list.append(flow)
warped_img0 = warp(img0, flow[:, :2])
warped_img1 = warp(img1, flow[:, 2:4])
merged_student = (warped_img0, warped_img1)
merged.append(merged_student)
if gt.shape[1] == 3:
flow_d, mask_d = self.block_tea(
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
)
flow_teacher = flow + flow_d
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
mask_teacher = torch.sigmoid(mask + mask_d)
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
else:
flow_teacher = None
merged_teacher = None
for i in range(3):
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
if gt.shape[1] == 3:
loss_mask = (
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
.float()
.detach()
)
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
c0 = self.contextnet(img0, flow[:, :2])
c1 = self.contextnet(img1, flow[:, 2:4])
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
res = tmp[:, :3] * 2 - 1
merged[2] = torch.clamp(merged[2] + res, 0, 1)
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill