SkalskiP's picture
Update app to support confidence adjustment and mask options
f89aac1
raw
history blame
5.09 kB
from typing import List
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel
MARKDOWN = """
# Segment Anything Model + MetaCLIP
This is the demo for a Open Vocabulary Image Segmentation using
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
"""
EXAMPLES = [
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog", 0.5],
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "coffee", 0.6],
]
MIN_AREA_THRESHOLD = 0.01
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
task="mask-generation",
model="facebook/sam-vit-large",
device=DEVICE)
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
SEMITRANSPARENT_MASK_ANNOTATOR = sv.MaskAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX)
SOLID_MASK_ANNOTATOR = sv.MaskAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX,
opacity=1)
def run_sam(image_rgb_pil: Image.Image) -> sv.Detections:
outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch=32)
mask = np.array(outputs['masks'])
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
def run_clip(image_rgb_pil: Image.Image, text: List[str]) -> np.ndarray:
inputs = CLIP_PROCESSOR(
text=text,
images=image_rgb_pil,
return_tensors="pt",
padding=True
).to(DEVICE)
outputs = CLIP_MODEL(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
return probs.detach().cpu().numpy()
def reverse_mask_image(image: np.ndarray, mask: np.ndarray, gray_value=128):
gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
return np.where(mask[..., None], image, gray_color)
def annotate(
image_rgb_pil: Image.Image,
detections: sv.Detections,
annotator: sv.MaskAnnotator
) -> Image.Image:
img_bgr_numpy = np.array(image_rgb_pil)[:, :, ::-1]
annotated_bgr_image = annotator.annotate(
scene=img_bgr_numpy, detections=detections)
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
def filter_detections(
image_rgb_pil: Image.Image,
detections: sv.Detections,
prompt: str,
confidence: float
) -> sv.Detections:
img_rgb_numpy = np.array(image_rgb_pil)
text = [f"a picture of {prompt}", "a picture of background"]
filtering_mask = []
for xyxy, mask in zip(detections.xyxy, detections.mask):
crop = sv.crop_image(image=img_rgb_numpy, xyxy=xyxy)
mask_crop = sv.crop_image(image=mask, xyxy=xyxy)
masked_crop = reverse_mask_image(image=crop, mask=mask_crop)
masked_crop_pil = Image.fromarray(masked_crop)
probs = run_clip(image_rgb_pil=masked_crop_pil, text=text)
filtering_mask.append(probs[0][0] > confidence)
filtering_mask = np.array(filtering_mask)
return detections[filtering_mask]
def inference(
image_rgb_pil: Image.Image,
prompt: str,
confidence: float
) -> List[Image.Image]:
width, height = image_rgb_pil.size
area = width * height
detections = run_sam(image_rgb_pil)
detections = detections[detections.area / area > MIN_AREA_THRESHOLD]
detections = filter_detections(
image_rgb_pil=image_rgb_pil,
detections=detections,
prompt=prompt,
confidence=confidence)
blank_image = Image.new("RGB", (width, height), "black")
return [
annotate(
image_rgb_pil=image_rgb_pil,
detections=detections,
annotator=SEMITRANSPARENT_MASK_ANNOTATOR),
annotate(
image_rgb_pil=blank_image,
detections=detections,
annotator=SOLID_MASK_ANNOTATOR)
]
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(
image_mode='RGB', type='pil', height=500)
prompt_text = gr.Textbox(
label="Prompt", value="dog")
confidence_slider = gr.Slider(
label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
submit_button = gr.Button("Submit")
gallery = gr.Gallery(label="Result", object_fit="scale-down", preview=True)
with gr.Row():
gr.Examples(
examples=EXAMPLES,
fn=inference,
inputs=[input_image, prompt_text, confidence_slider],
outputs=[gallery],
cache_examples=True,
run_on_click=True
)
submit_button.click(
inference,
inputs=[input_image, prompt_text, confidence_slider],
outputs=gallery)
demo.launch(debug=False, show_error=True)