|
import argparse |
|
|
|
import numpy |
|
import numpy as np |
|
import pydub |
|
import torch |
|
|
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
from text.symbols import symbols |
|
|
|
|
|
latest_version = "2.0" |
|
|
|
|
|
def get_net_g(model_path: str, device: str, hps): |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
_ = net_g.eval() |
|
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) |
|
return net_g |
|
|
|
|
|
def get_text(text, language_str, hps, device): |
|
|
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str, device) |
|
del word2ph |
|
assert bert.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert |
|
sh_bert = torch.zeros(1024, len(phone)) |
|
en_bert = torch.zeros(1024, len(phone)) |
|
elif language_str == "SH": |
|
bert = torch.zeros(1024, len(phone)) |
|
sh_bert = bert |
|
en_bert = torch.zeros(1024, len(phone)) |
|
elif language_str == "EN": |
|
bert = torch.zeros(1024, len(phone)) |
|
sh_bert = torch.zeros(1024, len(phone)) |
|
en_bert = bert |
|
else: |
|
raise ValueError("language_str should be ZH, SH or EN") |
|
|
|
assert bert.shape[-1] == len(phone), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, sh_bert, en_bert, phone, tone, language |
|
|
|
|
|
def infer( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
): |
|
bert, sh_bert, en_bert, phones, tones, lang_ids = get_text(text, language, hps, device) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
sh_bert = sh_bert.to(device).unsqueeze(0) |
|
en_bert = en_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
sh_bert, |
|
en_bert, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers |
|
torch.cuda.empty_cache() |
|
return audio |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', type=str, default='configs/config.json') |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--model_path', type=str, default='models/G_1000.pth') |
|
parser.add_argument('--output', type=str, default='sample') |
|
args = parser.parse_args() |
|
|
|
hps = utils.get_hparams_from_file(args.config) |
|
net_g = get_net_g(args.model_path, device=args.device, hps=hps) |
|
|
|
|
|
|
|
|
|
|
|
sdp_ratio = 0 |
|
noise_scale = 0.667 |
|
noise_scale_w = 0.8 |
|
length_scale = 0.9 |
|
|
|
def do_sample(texts, sid, export_tag): |
|
audio_data = numpy.array([], dtype=numpy.float32) |
|
|
|
for (sub_text, language) in texts: |
|
sub_audio_data = infer(sub_text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, args.device) |
|
audio_data = np.concatenate((audio_data, sub_audio_data)) |
|
|
|
audio_data = audio_data / numpy.abs(audio_data).max() |
|
audio_data = audio_data * 32767 |
|
audio_data = audio_data.astype(numpy.int16) |
|
sound = pydub.AudioSegment(audio_data, frame_rate=hps.data.sampling_rate, sample_width=audio_data.dtype.itemsize, channels=1) |
|
export_filename = args.output + export_tag + sid + '.mp3' |
|
sound.export(export_filename, format='mp3') |
|
print(export_filename) |
|
|
|
text = [('我觉得有点贵。', 'ZH'), ('so expensive, can they?', 'EN'), ('哈巨,吃不消它。', 'SH')] |
|
|
|
do_sample(text, '小庄', '_1_') |
|
do_sample(text, '小嘟', '_1_') |
|
do_sample(text, 'Jane', '_1_') |
|
do_sample(text, '小贝', '_1_') |
|
do_sample(text, '老克勒', '_1_') |
|
do_sample(text, '美琳', '_1_') |
|
|
|
pass |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|