File size: 7,332 Bytes
e30d08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569822
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy (yangtao9009@gmail.com)
'''
import os
import cv2
import torch
import numpy as np
from videoretalking.third_part.GPEN.face_parse.parse_model import ParseNet
import torch.nn.functional as F

from videoretalking.third_part.GPEN.face_parse.model import BiSeNet
import torchvision.transforms as transforms

class FaceParse(object):
    def __init__(self, base_dir='./', model='ParseNet-latest', device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
        self.mfile = os.path.join(base_dir, model+'.pth')
        self.size = 512
        self.device = device

        '''
        0: 'background' 1: 'skin'   2: 'nose'
        3: 'eye_g'  4: 'l_eye'  5: 'r_eye'
        6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
        9: 'r_ear'  10: 'mouth' 11: 'u_lip'
        12: 'l_lip' 13: 'hair'  14: 'hat'
        15: 'ear_r' 16: 'neck_l'    17: 'neck'
        18: 'cloth'
        '''
        # self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
        #self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
        # self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
        self.MASK_COLORMAP = mask_map

        self.load_model()

    def load_model(self):
        self.faceparse = ParseNet(self.size, self.size, 32, 64, 19, norm_type='bn', relu_type='LeakyReLU', ch_range=[32, 256])
        self.faceparse.load_state_dict(torch.load(self.mfile, map_location=torch.device('cpu')))
        self.faceparse.to(self.device)
        self.faceparse.eval()

    def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
        im = cv2.resize(im, (self.size, self.size))
        imt = self.img2tensor(im)
        with torch.no_grad():
            pred_mask, sr_img_tensor = self.faceparse(imt)  # (1, 19, 512, 512)
        mask = self.tenor2mask(pred_mask, masks)

        return mask

    def process_tensor(self, imt):
        imt = F.interpolate(imt.flip(1)*2-1, (self.size, self.size))
        pred_mask, sr_img_tensor = self.faceparse(imt)

        mask = pred_mask.argmax(dim=1)
        for idx, color in enumerate(self.MASK_COLORMAP):
            mask = torch.where(mask==idx, color, mask)
        #mask = mask.repeat(3, 1, 1).unsqueeze(0) #.cpu().float().numpy()
        mask = mask.unsqueeze(0)

        return mask

    def img2tensor(self, img):
        img = img[..., ::-1] # BGR to RGB
        img = img / 255. * 2 - 1
        img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
        return img_tensor.float()

    def tenor2mask(self, tensor, masks):
        if len(tensor.shape) < 4:
            tensor = tensor.unsqueeze(0)
        if tensor.shape[1] > 1:
            tensor = tensor.argmax(dim=1) 

        tensor = tensor.squeeze(1).data.cpu().numpy()   # (1, 512, 512)
        color_maps = []
        for t in tensor:
            #tmp_img = np.zeros(tensor.shape[1:] + (3,))
            tmp_img = np.zeros(tensor.shape[1:])
            for idx, color in enumerate(masks):
                tmp_img[t == idx] = color
            color_maps.append(tmp_img.astype(np.uint8))
        return color_maps



class FaceParse_v2(object):
    def __init__(self, device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
        self.mfile = '/apdcephfs/private_quincheng/Expression/face-parsing.PyTorch/res/cp/79999_iter.pth'
        self.size = 512
        self.device = device

        '''
        0: 'background' 1: 'skin'   2: 'nose'
        3: 'eye_g'  4: 'l_eye'  5: 'r_eye'
        6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
        9: 'r_ear'  10: 'mouth' 11: 'u_lip'
        12: 'l_lip' 13: 'hair'  14: 'hat'
        15: 'ear_r' 16: 'neck_l'    17: 'neck'
        18: 'cloth'
        '''
        # self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
        #self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
        # self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
        self.MASK_COLORMAP = mask_map
        self.load_model()
        self.to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])

    def load_model(self):
        self.faceparse = BiSeNet(n_classes=19)
        self.faceparse.load_state_dict(torch.load(self.mfile))
        self.faceparse.to(self.device)
        self.faceparse.eval()

    def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
        im = cv2.resize(im[...,::-1], (self.size, self.size))
        im = self.to_tensor(im)
        imt = torch.unsqueeze(im, 0).to(self.device)
        with torch.no_grad():
            pred_mask = self.faceparse(imt)[0]
        mask = self.tenor2mask(pred_mask, masks)
        return mask

    # def img2tensor(self, img):
    #     img = img[..., ::-1] # BGR to RGB
    #     img = img / 255. * 2 - 1
    #     img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
    #     return img_tensor.float()

    def tenor2mask(self, tensor, masks):
        if len(tensor.shape) < 4:
            tensor = tensor.unsqueeze(0)
        if tensor.shape[1] > 1:
            tensor = tensor.argmax(dim=1) 

        tensor = tensor.squeeze(1).data.cpu().numpy()
        color_maps = []
        for t in tensor:
            #tmp_img = np.zeros(tensor.shape[1:] + (3,))
            tmp_img = np.zeros(tensor.shape[1:])
            for idx, color in enumerate(masks):
                tmp_img[t == idx] = color
            color_maps.append(tmp_img.astype(np.uint8))
        return color_maps