Spaces:
Sleeping
Sleeping
# Prediction interface for Cog ⚙️ | |
# https://github.com/replicate/cog/blob/main/docs/python.md | |
import os | |
import sys | |
import argparse | |
import subprocess | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image | |
from scipy.io import loadmat | |
import torch | |
import cv2 | |
from cog import BasePredictor, Input, Path | |
sys.path.insert(0, "third_part") | |
sys.path.insert(0, "third_part/GPEN") | |
sys.path.insert(0, "third_part/GFPGAN") | |
# 3dmm extraction | |
from third_part.face3d.util.preprocess import align_img | |
from third_part.face3d.util.load_mats import load_lm3d | |
from third_part.face3d.extract_kp_videos import KeypointExtractor | |
# face enhancement | |
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement | |
from third_part.GFPGAN.gfpgan import GFPGANer | |
# expression control | |
from third_part.ganimation_replicate.model.ganimation import GANimationModel | |
from utils import audio | |
from utils.ffhq_preprocess import Croper | |
from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image | |
from utils.inference_utils import ( | |
Laplacian_Pyramid_Blending_with_mask, | |
face_detect, | |
load_model, | |
options, | |
split_coeff, | |
trans_image, | |
transform_semantic, | |
find_crop_norm_ratio, | |
load_face3d_net, | |
exp_aus_dict, | |
) | |
class Predictor(BasePredictor): | |
def setup(self) -> None: | |
"""Load the model into memory to make running multiple predictions efficient""" | |
self.enhancer = FaceEnhancement( | |
base_dir="checkpoints", | |
size=512, | |
model="GPEN-BFR-512", | |
use_sr=False, | |
sr_model="rrdb_realesrnet_psnr", | |
channel_multiplier=2, | |
narrow=1, | |
device="cuda", | |
) | |
self.restorer = GFPGANer( | |
model_path="checkpoints/GFPGANv1.3.pth", | |
upscale=1, | |
arch="clean", | |
channel_multiplier=2, | |
bg_upsampler=None, | |
) | |
self.croper = Croper("checkpoints/shape_predictor_68_face_landmarks.dat") | |
self.kp_extractor = KeypointExtractor() | |
face3d_net_path = "checkpoints/face3d_pretrain_epoch_20.pth" | |
self.net_recon = load_face3d_net(face3d_net_path, "cuda") | |
self.lm3d_std = load_lm3d("checkpoints/BFM") | |
def predict( | |
self, | |
face: Path = Input(description="Input video file of a talking-head."), | |
input_audio: Path = Input(description="Input audio file."), | |
) -> Path: | |
"""Run a single prediction on the model""" | |
device = "cuda" | |
args = argparse.Namespace( | |
DNet_path="checkpoints/DNet.pt", | |
LNet_path="checkpoints/LNet.pth", | |
ENet_path="checkpoints/ENet.pth", | |
face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth", | |
face=str(face), | |
audio=str(input_audio), | |
exp_img="neutral", | |
outfile=None, | |
fps=25, | |
pads=[0, 20, 0, 0], | |
face_det_batch_size=4, | |
LNet_batch_size=16, | |
img_size=384, | |
crop=[0, -1, 0, -1], | |
box=[-1, -1, -1, -1], | |
nosmooth=False, | |
static=False, | |
up_face="original", | |
one_shot=False, | |
without_rl1=False, | |
tmp_dir="temp", | |
re_preprocess=False, | |
) | |
base_name = args.face.split("/")[-1] | |
if args.face.split(".")[1] in ["jpg", "png", "jpeg"]: | |
full_frames = [cv2.imread(args.face)] | |
args.static = True | |
fps = args.fps | |
else: | |
video_stream = cv2.VideoCapture(args.face) | |
fps = video_stream.get(cv2.CAP_PROP_FPS) | |
full_frames = [] | |
while True: | |
still_reading, frame = video_stream.read() | |
if not still_reading: | |
video_stream.release() | |
break | |
y1, y2, x1, x2 = args.crop | |
if x2 == -1: | |
x2 = frame.shape[1] | |
if y2 == -1: | |
y2 = frame.shape[0] | |
frame = frame[y1:y2, x1:x2] | |
full_frames.append(frame) | |
full_frames_RGB = [ | |
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames | |
] | |
full_frames_RGB, crop, quad = self.croper.crop(full_frames_RGB, xsize=512) | |
clx, cly, crx, cry = crop | |
lx, ly, rx, ry = quad | |
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) | |
oy1, oy2, ox1, ox2 = ( | |
cly + ly, | |
min(cly + ry, full_frames[0].shape[0]), | |
clx + lx, | |
min(clx + rx, full_frames[0].shape[1]), | |
) | |
# original_size = (ox2 - ox1, oy2 - oy1) | |
frames_pil = [ | |
Image.fromarray(cv2.resize(frame, (256, 256))) for frame in full_frames_RGB | |
] | |
# get the landmark according to the detected face. | |
if ( | |
not os.path.isfile("temp/" + base_name + "_landmarks.txt") | |
or args.re_preprocess | |
): | |
print("[Step 1] Landmarks Extraction in Video.") | |
lm = self.kp_extractor.extract_keypoint( | |
frames_pil, "./temp/" + base_name + "_landmarks.txt" | |
) | |
else: | |
print("[Step 1] Using saved landmarks.") | |
lm = np.loadtxt("temp/" + base_name + "_landmarks.txt").astype(np.float32) | |
lm = lm.reshape([len(full_frames), -1, 2]) | |
if ( | |
not os.path.isfile("temp/" + base_name + "_coeffs.npy") | |
or args.exp_img is not None | |
or args.re_preprocess | |
): | |
video_coeffs = [] | |
for idx in tqdm( | |
range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:" | |
): | |
frame = frames_pil[idx] | |
W, H = frame.size | |
lm_idx = lm[idx].reshape([-1, 2]) | |
if np.mean(lm_idx) == -1: | |
lm_idx = (self.lm3d_std[:, :2] + 1) / 2.0 | |
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1) | |
else: | |
lm_idx[:, -1] = H - 1 - lm_idx[:, -1] | |
trans_params, im_idx, lm_idx, _ = align_img( | |
frame, lm_idx, self.lm3d_std | |
) | |
trans_params = np.array( | |
[float(item) for item in np.hsplit(trans_params, 5)] | |
).astype(np.float32) | |
im_idx_tensor = ( | |
torch.tensor(np.array(im_idx) / 255.0, dtype=torch.float32) | |
.permute(2, 0, 1) | |
.to(device) | |
.unsqueeze(0) | |
) | |
with torch.no_grad(): | |
coeffs = split_coeff(self.net_recon(im_idx_tensor)) | |
pred_coeff = {key: coeffs[key].cpu().numpy() for key in coeffs} | |
pred_coeff = np.concatenate( | |
[ | |
pred_coeff["id"], | |
pred_coeff["exp"], | |
pred_coeff["tex"], | |
pred_coeff["angle"], | |
pred_coeff["gamma"], | |
pred_coeff["trans"], | |
trans_params[None], | |
], | |
1, | |
) | |
video_coeffs.append(pred_coeff) | |
semantic_npy = np.array(video_coeffs)[:, 0] | |
np.save("temp/" + base_name + "_coeffs.npy", semantic_npy) | |
else: | |
print("[Step 2] Using saved coeffs.") | |
semantic_npy = np.load("temp/" + base_name + "_coeffs.npy").astype( | |
np.float32 | |
) | |
# generate the 3dmm coeff from a single image | |
if args.exp_img == "smile": | |
expression = torch.tensor( | |
loadmat("checkpoints/expression.mat")["expression_mouth"] | |
)[0] | |
else: | |
print("using expression center") | |
expression = torch.tensor( | |
loadmat("checkpoints/expression.mat")["expression_center"] | |
)[0] | |
# load DNet, model(LNet and ENet) | |
D_Net, model = load_model(args, device) | |
if ( | |
not os.path.isfile("temp/" + base_name + "_stablized.npy") | |
or args.re_preprocess | |
): | |
imgs = [] | |
for idx in tqdm( | |
range(len(frames_pil)), | |
desc="[Step 3] Stabilize the expression In Video:", | |
): | |
if args.one_shot: | |
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device) | |
semantic_source_numpy = semantic_npy[0:1] | |
else: | |
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device) | |
semantic_source_numpy = semantic_npy[idx : idx + 1] | |
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy) | |
coeff = ( | |
transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device) | |
) | |
# hacking the new expression | |
coeff[:, :64, :] = expression[None, :64, None].to(device) | |
with torch.no_grad(): | |
output = D_Net(source_img, coeff) | |
img_stablized = np.uint8( | |
( | |
output["fake_image"] | |
.squeeze(0) | |
.permute(1, 2, 0) | |
.cpu() | |
.clamp_(-1, 1) | |
.numpy() | |
+ 1 | |
) | |
/ 2.0 | |
* 255 | |
) | |
imgs.append(cv2.cvtColor(img_stablized, cv2.COLOR_RGB2BGR)) | |
np.save("temp/" + base_name + "_stablized.npy", imgs) | |
del D_Net | |
else: | |
print("[Step 3] Using saved stabilized video.") | |
imgs = np.load("temp/" + base_name + "_stablized.npy") | |
torch.cuda.empty_cache() | |
if not args.audio.endswith(".wav"): | |
command = "ffmpeg -loglevel error -y -i {} -strict -2 {}".format( | |
args.audio, "temp/{}/temp.wav".format(args.tmp_dir) | |
) | |
subprocess.call(command, shell=True) | |
args.audio = "temp/{}/temp.wav".format(args.tmp_dir) | |
wav = audio.load_wav(args.audio, 16000) | |
mel = audio.melspectrogram(wav) | |
if np.isnan(mel.reshape(-1)).sum() > 0: | |
raise ValueError( | |
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again" | |
) | |
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80.0 / fps, 0, [] | |
while True: | |
start_idx = int(i * mel_idx_multiplier) | |
if start_idx + mel_step_size > len(mel[0]): | |
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :]) | |
break | |
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) | |
i += 1 | |
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks))) | |
imgs = imgs[: len(mel_chunks)] | |
full_frames = full_frames[: len(mel_chunks)] | |
lm = lm[: len(mel_chunks)] | |
imgs_enhanced = [] | |
for idx in tqdm(range(len(imgs)), desc="[Step 5] Reference Enhancement"): | |
img = imgs[idx] | |
pred, _, _ = self.enhancer.process( | |
img, img, face_enhance=True, possion_blending=False | |
) | |
imgs_enhanced.append(pred) | |
gen = datagen( | |
imgs_enhanced.copy(), mel_chunks, full_frames, args, (oy1, oy2, ox1, ox2) | |
) | |
frame_h, frame_w = full_frames[0].shape[:-1] | |
out = cv2.VideoWriter( | |
"temp/{}/result.mp4".format(args.tmp_dir), | |
cv2.VideoWriter_fourcc(*"mp4v"), | |
fps, | |
(frame_w, frame_h), | |
) | |
if args.up_face != "original": | |
instance = GANimationModel() | |
instance.initialize() | |
instance.setup() | |
# kp_extractor = KeypointExtractor() | |
for i, ( | |
img_batch, | |
mel_batch, | |
frames, | |
coords, | |
img_original, | |
f_frames, | |
) in enumerate( | |
tqdm( | |
gen, | |
desc="[Step 6] Lip Synthesis:", | |
total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)), | |
) | |
): | |
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to( | |
device | |
) | |
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to( | |
device | |
) | |
img_original = ( | |
torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device) | |
/ 255.0 | |
) # BGR -> RGB | |
with torch.no_grad(): | |
incomplete, reference = torch.split(img_batch, 3, dim=1) | |
pred, low_res = model(mel_batch, img_batch, reference) | |
pred = torch.clamp(pred, 0, 1) | |
if args.up_face in ["sad", "angry", "surprise"]: | |
tar_aus = exp_aus_dict[args.up_face] | |
else: | |
pass | |
if args.up_face == "original": | |
cur_gen_faces = img_original | |
else: | |
test_batch = { | |
"src_img": torch.nn.functional.interpolate( | |
(img_original * 2 - 1), size=(128, 128), mode="bilinear" | |
), | |
"tar_aus": tar_aus.repeat(len(incomplete), 1), | |
} | |
instance.feed_batch(test_batch) | |
instance.forward() | |
cur_gen_faces = torch.nn.functional.interpolate( | |
instance.fake_img / 2.0 + 0.5, size=(384, 384), mode="bilinear" | |
) | |
if args.without_rl1 is not False: | |
incomplete, reference = torch.split(img_batch, 3, dim=1) | |
mask = torch.where( | |
incomplete == 0, | |
torch.ones_like(incomplete), | |
torch.zeros_like(incomplete), | |
) | |
pred = pred * mask + cur_gen_faces * (1 - mask) | |
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0 | |
torch.cuda.empty_cache() | |
for p, f, xf, c in zip(pred, frames, f_frames, coords): | |
y1, y2, x1, x2 = c | |
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) | |
ff = xf.copy() | |
ff[y1:y2, x1:x2] = p | |
# month region enhancement by GFPGAN | |
cropped_faces, restored_faces, restored_img = self.restorer.enhance( | |
ff, has_aligned=False, only_center_face=True, paste_back=True | |
) | |
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, | |
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0] | |
mouse_mask = np.zeros_like(restored_img) | |
tmp_mask = self.enhancer.faceparser.process( | |
restored_img[y1:y2, x1:x2], mm | |
)[0] | |
mouse_mask[y1:y2, x1:x2] = ( | |
cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.0 | |
) | |
height, width = ff.shape[:2] | |
restored_img, ff, full_mask = [ | |
cv2.resize(x, (512, 512)) | |
for x in (restored_img, ff, np.float32(mouse_mask)) | |
] | |
img = Laplacian_Pyramid_Blending_with_mask( | |
restored_img, ff, full_mask[:, :, 0], 10 | |
) | |
pp = np.uint8(cv2.resize(np.clip(img, 0, 255), (width, height))) | |
pp, orig_faces, enhanced_faces = self.enhancer.process( | |
pp, xf, bbox=c, face_enhance=False, possion_blending=True | |
) | |
out.write(pp) | |
out.release() | |
output_file = "/tmp/output.mp4" | |
command = "ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}".format( | |
args.audio, "temp/{}/result.mp4".format(args.tmp_dir), output_file | |
) | |
subprocess.call(command, shell=True) | |
return Path(output_file) | |
# frames:256x256, full_frames: original size | |
def datagen(frames, mels, full_frames, args, cox): | |
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = ( | |
[], | |
[], | |
[], | |
[], | |
[], | |
[], | |
) | |
base_name = args.face.split("/")[-1] | |
refs = [] | |
image_size = 256 | |
# original frames | |
kp_extractor = KeypointExtractor() | |
fr_pil = [Image.fromarray(frame) for frame in frames] | |
lms = kp_extractor.extract_keypoint( | |
fr_pil, "temp/" + base_name + "x12_landmarks.txt" | |
) | |
frames_pil = [ | |
(lm, frame) for frame, lm in zip(fr_pil, lms) | |
] # frames is the croped version of modified face | |
crops, orig_images, quads = crop_faces( | |
image_size, frames_pil, scale=1.0, use_fa=True | |
) | |
inverse_transforms = [ | |
calc_alignment_coefficients( | |
quad + 0.5, | |
[[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]], | |
) | |
for quad in quads | |
] | |
del kp_extractor.detector | |
oy1, oy2, ox1, ox2 = cox | |
face_det_results = face_detect(full_frames, args, jaw_correction=True) | |
for inverse_transform, crop, full_frame, face_det in zip( | |
inverse_transforms, crops, full_frames, face_det_results | |
): | |
imc_pil = paste_image( | |
inverse_transform, | |
crop, | |
Image.fromarray( | |
cv2.resize( | |
full_frame[int(oy1) : int(oy2), int(ox1) : int(ox2)], (256, 256) | |
) | |
), | |
) | |
ff = full_frame.copy() | |
ff[int(oy1) : int(oy2), int(ox1) : int(ox2)] = cv2.resize( | |
np.array(imc_pil.convert("RGB")), (ox2 - ox1, oy2 - oy1) | |
) | |
oface, coords = face_det | |
y1, y2, x1, x2 = coords | |
refs.append(ff[y1:y2, x1:x2]) | |
for i, m in enumerate(mels): | |
idx = 0 if args.static else i % len(frames) | |
frame_to_save = frames[idx].copy() | |
face = refs[idx] | |
oface, coords = face_det_results[idx].copy() | |
face = cv2.resize(face, (args.img_size, args.img_size)) | |
oface = cv2.resize(oface, (args.img_size, args.img_size)) | |
img_batch.append(oface) | |
ref_batch.append(face) | |
mel_batch.append(m) | |
coords_batch.append(coords) | |
frame_batch.append(frame_to_save) | |
full_frame_batch.append(full_frames[idx].copy()) | |
if len(img_batch) >= args.LNet_batch_size: | |
img_batch, mel_batch, ref_batch = ( | |
np.asarray(img_batch), | |
np.asarray(mel_batch), | |
np.asarray(ref_batch), | |
) | |
img_masked = img_batch.copy() | |
img_original = img_batch.copy() | |
img_masked[:, args.img_size // 2 :] = 0 | |
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 | |
mel_batch = np.reshape( | |
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] | |
) | |
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch | |
( | |
img_batch, | |
mel_batch, | |
frame_batch, | |
coords_batch, | |
img_original, | |
full_frame_batch, | |
ref_batch, | |
) = ([], [], [], [], [], [], []) | |
if len(img_batch) > 0: | |
img_batch, mel_batch, ref_batch = ( | |
np.asarray(img_batch), | |
np.asarray(mel_batch), | |
np.asarray(ref_batch), | |
) | |
img_masked = img_batch.copy() | |
img_original = img_batch.copy() | |
img_masked[:, args.img_size // 2 :] = 0 | |
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 | |
mel_batch = np.reshape( | |
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] | |
) | |
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch | |