Spaces:
Paused
Paused
""" | |
This script contains the image preprocessing code for Deep3DFaceRecon_pytorch | |
""" | |
import numpy as np | |
from scipy.io import loadmat | |
from PIL import Image | |
import cv2 | |
import os | |
from skimage import transform as trans | |
import torch | |
import warnings | |
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
# calculating least square problem for image alignment | |
def POS(xp, x): | |
npts = xp.shape[1] | |
A = np.zeros([2*npts, 8]) | |
A[0:2*npts-1:2, 0:3] = x.transpose() | |
A[0:2*npts-1:2, 3] = 1 | |
A[1:2*npts:2, 4:7] = x.transpose() | |
A[1:2*npts:2, 7] = 1 | |
b = np.reshape(xp.transpose(), [2*npts, 1]) | |
k, _, _, _ = np.linalg.lstsq(A, b) | |
R1 = k[0:3] | |
R2 = k[4:7] | |
sTx = k[3] | |
sTy = k[7] | |
s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2 | |
t = np.stack([sTx, sTy], axis=0) | |
return t, s | |
# bounding box for 68 landmark detection | |
def BBRegression(points, params): | |
w1 = params['W1'] | |
b1 = params['B1'] | |
w2 = params['W2'] | |
b2 = params['B2'] | |
data = points.copy() | |
data = data.reshape([5, 2]) | |
data_mean = np.mean(data, axis=0) | |
x_mean = data_mean[0] | |
y_mean = data_mean[1] | |
data[:, 0] = data[:, 0] - x_mean | |
data[:, 1] = data[:, 1] - y_mean | |
rms = np.sqrt(np.sum(data ** 2)/5) | |
data = data / rms | |
data = data.reshape([1, 10]) | |
data = np.transpose(data) | |
inputs = np.matmul(w1, data) + b1 | |
inputs = 2 / (1 + np.exp(-2 * inputs)) - 1 | |
inputs = np.matmul(w2, inputs) + b2 | |
inputs = np.transpose(inputs) | |
x = inputs[:, 0] * rms + x_mean | |
y = inputs[:, 1] * rms + y_mean | |
w = 224/inputs[:, 2] * rms | |
rects = [x, y, w, w] | |
return np.array(rects).reshape([4]) | |
# utils for landmark detection | |
def img_padding(img, box): | |
success = True | |
bbox = box.copy() | |
res = np.zeros([2*img.shape[0], 2*img.shape[1], 3]) | |
res[img.shape[0] // 2: img.shape[0] + img.shape[0] // | |
2, img.shape[1] // 2: img.shape[1] + img.shape[1]//2] = img | |
bbox[0] = bbox[0] + img.shape[1] // 2 | |
bbox[1] = bbox[1] + img.shape[0] // 2 | |
if bbox[0] < 0 or bbox[1] < 0: | |
success = False | |
return res, bbox, success | |
# utils for landmark detection | |
def crop(img, bbox): | |
padded_img, padded_bbox, flag = img_padding(img, bbox) | |
if flag: | |
crop_img = padded_img[padded_bbox[1]: padded_bbox[1] + | |
padded_bbox[3], padded_bbox[0]: padded_bbox[0] + padded_bbox[2]] | |
crop_img = cv2.resize(crop_img.astype(np.uint8), | |
(224, 224), interpolation=cv2.INTER_CUBIC) | |
scale = 224 / padded_bbox[3] | |
return crop_img, scale | |
else: | |
return padded_img, 0 | |
# utils for landmark detection | |
def scale_trans(img, lm, t, s): | |
imgw = img.shape[1] | |
imgh = img.shape[0] | |
M_s = np.array([[1, 0, -t[0] + imgw//2 + 0.5], [0, 1, -imgh//2 + t[1]]], | |
dtype=np.float32) | |
img = cv2.warpAffine(img, M_s, (imgw, imgh)) | |
w = int(imgw / s * 100) | |
h = int(imgh / s * 100) | |
img = cv2.resize(img, (w, h)) | |
lm = np.stack([lm[:, 0] - t[0] + imgw // 2, lm[:, 1] - | |
t[1] + imgh // 2], axis=1) / s * 100 | |
left = w//2 - 112 | |
up = h//2 - 112 | |
bbox = [left, up, 224, 224] | |
cropped_img, scale2 = crop(img, bbox) | |
assert(scale2!=0) | |
t1 = np.array([bbox[0], bbox[1]]) | |
# back to raw img s * crop + s * t1 + t2 | |
t1 = np.array([w//2 - 112, h//2 - 112]) | |
scale = s / 100 | |
t2 = np.array([t[0] - imgw/2, t[1] - imgh / 2]) | |
inv = (scale/scale2, scale * t1 + t2.reshape([2])) | |
return cropped_img, inv | |
# utils for landmark detection | |
def align_for_lm(img, five_points): | |
five_points = np.array(five_points).reshape([1, 10]) | |
params = loadmat('util/BBRegressorParam_r.mat') | |
bbox = BBRegression(five_points, params) | |
assert(bbox[2] != 0) | |
bbox = np.round(bbox).astype(np.int32) | |
crop_img, scale = crop(img, bbox) | |
return crop_img, scale, bbox | |
# resize and crop images for face reconstruction | |
def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None): | |
w0, h0 = img.size | |
w = (w0*s).astype(np.int32) | |
h = (h0*s).astype(np.int32) | |
left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32) | |
right = left + target_size | |
up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32) | |
below = up + target_size | |
img = img.resize((w, h), resample=Image.BICUBIC) | |
img = img.crop((left, up, right, below)) | |
if mask is not None: | |
mask = mask.resize((w, h), resample=Image.BICUBIC) | |
mask = mask.crop((left, up, right, below)) | |
lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] - | |
t[1] + h0/2], axis=1)*s | |
lm = lm - np.reshape( | |
np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2]) | |
return img, lm, mask | |
# utils for face reconstruction | |
def extract_5p(lm): | |
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 | |
lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean( | |
lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0) | |
lm5p = lm5p[[1, 2, 0, 3, 4], :] | |
return lm5p | |
# utils for face reconstruction | |
def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.): | |
""" | |
Return: | |
transparams --numpy.array (raw_W, raw_H, scale, tx, ty) | |
img_new --PIL.Image (target_size, target_size, 3) | |
lm_new --numpy.array (68, 2), y direction is opposite to v direction | |
mask_new --PIL.Image (target_size, target_size) | |
Parameters: | |
img --PIL.Image (raw_H, raw_W, 3) | |
lm --numpy.array (68, 2), y direction is opposite to v direction | |
lm3D --numpy.array (5, 3) | |
mask --PIL.Image (raw_H, raw_W, 3) | |
""" | |
w0, h0 = img.size | |
if lm.shape[0] != 5: | |
lm5p = extract_5p(lm) | |
else: | |
lm5p = lm | |
# calculate translation and scale factors using 5 facial landmarks and standard landmarks of a 3D face | |
t, s = POS(lm5p.transpose(), lm3D.transpose()) | |
s = rescale_factor/s | |
# processing the image | |
img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask) | |
trans_params = np.array([w0, h0, s, t[0], t[1]]) | |
return trans_params, img_new, lm_new, mask_new | |
# utils for face recognition model | |
def estimate_norm(lm_68p, H): | |
# from https://github.com/deepinsight/insightface/blob/c61d3cd208a603dfa4a338bd743b320ce3e94730/recognition/common/face_align.py#L68 | |
""" | |
Return: | |
trans_m --numpy.array (2, 3) | |
Parameters: | |
lm --numpy.array (68, 2), y direction is opposite to v direction | |
H --int/float , image height | |
""" | |
lm = extract_5p(lm_68p) | |
lm[:, -1] = H - 1 - lm[:, -1] | |
tform = trans.SimilarityTransform() | |
src = np.array( | |
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
[41.5493, 92.3655], [70.7299, 92.2041]], | |
dtype=np.float32) | |
tform.estimate(lm, src) | |
M = tform.params | |
if np.linalg.det(M) == 0: | |
M = np.eye(3) | |
return M[0:2, :] | |
def estimate_norm_torch(lm_68p, H): | |
lm_68p_ = lm_68p.detach().cpu().numpy() | |
M = [] | |
for i in range(lm_68p_.shape[0]): | |
M.append(estimate_norm(lm_68p_[i], H)) | |
M = torch.tensor(np.array(M), dtype=torch.float32).to(lm_68p.device) | |
return M | |