File size: 16,761 Bytes
b89eee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
b89eee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
3e3116b
 
 
 
 
 
 
 
 
d12ce0d
 
3e3116b
 
d12ce0d
3e3116b
 
d12ce0d
 
 
 
3e3116b
 
 
 
 
d12ce0d
b89eee2
 
 
 
 
 
 
 
 
 
 
d12ce0d
 
b89eee2
 
 
d12ce0d
b89eee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
b89eee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
b89eee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d12ce0d
b89eee2
557687d
6901e5d
b89eee2
6901e5d
b89eee2
557687d
b89eee2
 
 
 
 
6901e5d
b89eee2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
from __future__ import annotations

import functools
import os
import tempfile

import diffusers
import gradio as gr
import imageio as imageio
import numpy as np
import spaces
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
from tqdm import tqdm

from pathlib import Path
import cv2
import gradio
from gradio.utils import get_cache_folder
from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
from stablenormal.pipeline_stablenormal import StableNormalPipeline
from stablenormal.scheduler.heuristics_ddimsampler import HEURI_DDIMScheduler

class Examples(gradio.helpers.Examples):
    def __init__(self, *args, directory_name=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if directory_name is not None:
            self.cached_folder = get_cache_folder() / directory_name
            self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()


default_seed = 2024
default_batch_size = 1

default_image_processing_resolution = 768

default_video_num_inference_steps = 10
default_video_processing_resolution = 768
default_video_out_max_frames = 450

def process_image_check(path_input):
    if path_input is None:
        raise gr.Error(
            "Missing image in the first pane: upload a file or use one from the gallery below."
        )

def resize_image(input_image, resolution):
    # Ensure input_image is a PIL Image object
    if not isinstance(input_image, Image.Image):
        raise ValueError("input_image should be a PIL Image object")

    # Convert image to numpy array
    input_image_np = np.asarray(input_image)

    # Get image dimensions
    H, W, C = input_image_np.shape
    H = float(H)
    W = float(W)
    
    # Calculate the scaling factor
    k = float(resolution) / min(H, W)
    
    # Determine new dimensions
    H *= k
    W *= k
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    
    # Resize the image using PIL's resize method
    img = input_image.resize((W, H), Image.LANCZOS if k > 1 else Image.ANTIALIAS)
    
    return img

def process_image(
    pipe,
    path_input,
):
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    print(f"Processing image {name_base}{name_ext}")

    path_output_dir = tempfile.mkdtemp()
    path_out_png = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")

    input_image = Image.open(path_input)
    input_image = resize_image(input_image, default_image_processing_resolution)

    pipe_out = pipe(
        input_image,
        match_input_resolution=False,
        processing_resolution=max(input_image.size)
    )

    normal_pred = pipe_out.prediction[0, :, :]
    normal_colored = pipe.image_processor.visualize_normals(pipe_out.prediction)
    normal_colored[-1].save(path_out_png)
    return [input_image, path_out_png]

def center_crop(img):
    # Open the image file
    img_width, img_height = img.size
    crop_width =min(img_width, img_height)
    # Calculate the cropping box
    left = (img_width - crop_width) / 2
    top = (img_height - crop_width) / 2
    right = (img_width + crop_width) / 2
    bottom = (img_height + crop_width) / 2
    
    # Crop the image
    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped

def process_video(
    pipe,
    path_input,
    out_max_frames=default_video_out_max_frames,
    target_fps=3,
    progress=gr.Progress(),
):
    if path_input is None:
        raise gr.Error(
            "Missing video in the first pane: upload a file or use one from the gallery below."
        )

    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    print(f"Processing video {name_base}{name_ext}")

    path_output_dir = tempfile.mkdtemp()
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.mp4")

    reader, writer = None, None
    try:
        reader = imageio.get_reader(path_input)

        meta_data = reader.get_meta_data()
        fps = meta_data["fps"]
        size = meta_data["size"]
        duration_sec = meta_data["duration"]

        writer = imageio.get_writer(path_out_vis, fps=target_fps)

        out_frame_id = 0
        pbar = tqdm(desc="Processing Video", total=duration_sec)

        for frame_id, frame in enumerate(reader):
            if frame_id % (fps // target_fps) != 0:
                continue
            else:
                out_frame_id += 1
                pbar.update(1)
            if out_frame_id > out_max_frames:
                break

            frame_pil = Image.fromarray(frame)
            frame_pil = center_crop(frame_pil)
            pipe_out = pipe(
                frame_pil,
                match_input_resolution=False,
            )

            processed_frame = pipe.image_processor.visualize_normals(  # noqa
                pipe_out.prediction
            )[0]
            processed_frame = np.array(processed_frame)

            _processed_frame = imageio.core.util.Array(processed_frame)
            writer.append_data(_processed_frame)
            
            yield (
                [frame_pil, processed_frame],
                None,
            )
    finally:

        if writer is not None:
            writer.close()

        if reader is not None:
            reader.close()

    yield (
        [frame_pil, processed_frame],
        [path_out_vis,]
    )


def run_demo_server(pipe):
    process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
    process_pipe_video = spaces.GPU(
        functools.partial(process_video, pipe), duration=120
    )

    gradio_theme = gr.themes.Default()

    with gr.Blocks(
        theme=gradio_theme,
        title="Stable Normal Estimation",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:
        gr.Markdown(
            """
            # StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
            <p align="center">
        """
        )

        with gr.Tabs(elem_classes=["tabs"]):
            with gr.Tab("Image"):
                with gr.Row():
                    with gr.Column():
                        image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            image_submit_btn = gr.Button(
                                value="Compute Normal", variant="primary"
                            )
                            image_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        image_output_slider = ImageSlider(
                            label="Normal outputs",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                Examples(
                    fn=process_pipe_image,
                    examples=sorted([
                        os.path.join("files", "image", name)
                        for name in os.listdir(os.path.join("files", "image"))
                    ]),
                    inputs=[image_input],
                    outputs=[image_output_slider],
                    cache_examples=False,
                    directory_name="examples_image",
                )

            with gr.Tab("Video"):
                with gr.Row():
                    with gr.Column():
                        video_input = gr.Video(
                            label="Input Video",
                            sources=["upload", "webcam"],
                        )
                        with gr.Row():
                            video_submit_btn = gr.Button(
                                value="Compute Normal", variant="primary"
                            )
                            video_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        processed_frames = ImageSlider(
                            label="Realtime Visualization",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )
                        video_output_files = gr.Files(
                            label="Normal outputs",
                            elem_id="download",
                            interactive=False,
                        )
                Examples(
                    fn=process_pipe_video,
                    examples=sorted([
                        os.path.join("files", "video", name)
                        for name in os.listdir(os.path.join("files", "video"))
                    ]),
                    inputs=[video_input],
                    outputs=[processed_frames, video_output_files],
                    directory_name="examples_video",
                    cache_examples=False,
                )
                
            with gr.Tab("Panorama"):
                with gr.Column():
                    gr.Markdown("Functionality coming soon on June.10th")

            with gr.Tab("4K Image"):
                with gr.Column():
                    gr.Markdown("Functionality coming soon on June.17th")

            with gr.Tab("Normal Mapping"):
                with gr.Column():
                    gr.Markdown("Functionality coming soon on June.24th")
            
            with gr.Tab("Normal SuperResolution"):
                with gr.Column():
                    gr.Markdown("Functionality coming soon on June.30th")

        ### Image tab
        image_submit_btn.click(
            fn=process_image_check,
            inputs=image_input,
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            fn=process_pipe_image,
            inputs=[
                image_input,
            ],
            outputs=[image_output_slider],
            concurrency_limit=1,
        )

        image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                None,
            ),
            inputs=[],
            outputs=[
                image_input,
                image_output_slider,
            ],
            queue=False,
        )

        ### Video tab

        video_submit_btn.click(
            fn=process_pipe_video,
            inputs=[video_input],
            outputs=[processed_frames, video_output_files],
            concurrency_limit=1,
        )

        video_reset_btn.click(
            fn=lambda: (None, None, None),
            inputs=[],
            outputs=[video_input, processed_frames, video_output_files],
            concurrency_limit=1,
        )

        ### Server launch

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )

from einops import rearrange  
class DINOv2_Encoder:
    IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
    IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]

    def __init__(
        self,
        model_name = 'dinov2_vitl14',
        freeze = True,
        antialias=True,
        device="cuda",
        size = 448,
    ):

        super(DINOv2_Encoder).__init__()

        self.model = torch.hub.load('facebookresearch/dinov2', model_name)
        self.model.eval()
        self.device = device
        self.antialias = antialias
        self.dtype = torch.float32

        self.mean = torch.Tensor(self.IMAGENET_DEFAULT_MEAN)
        self.std = torch.Tensor(self.IMAGENET_DEFAULT_STD)
        self.size = size
        if freeze:
            self.freeze()


    def freeze(self):
        for param in self.model.parameters():
            param.requires_grad = False

    @torch.no_grad()
    def encoder(self, x):
        '''
        x: [b h w c], range from (-1, 1), rbg
        '''

        x = self.preprocess(x).to(self.device, self.dtype)

        b, c, h, w = x.shape
        patch_h, patch_w = h // 14, w // 14

        embeddings = self.model.forward_features(x)['x_norm_patchtokens']
        embeddings = rearrange(embeddings, 'b (h w) c -> b h w c', h = patch_h, w = patch_w)

        return  rearrange(embeddings, 'b h w c -> b c h w')

    def preprocess(self, x):
        ''' x
        '''
        # normalize to [0,1],
        x = torch.nn.functional.interpolate(
            x,
            size=(self.size, self.size),
            mode='bicubic',
            align_corners=True,
            antialias=self.antialias,
        )

        x = (x + 1.0) / 2.0
        # renormalize according to dino
        mean = self.mean.view(1, 3, 1, 1).to(x.device)
        std = self.std.view(1, 3, 1, 1).to(x.device)
        x = (x - mean) / std

        return x
    
    def to(self, device, dtype=None):
        if dtype is not None:
            self.dtype = dtype
            self.model.to(device, dtype)
            self.mean.to(device, dtype)
            self.std.to(device, dtype)
        else:
            self.model.to(device)
            self.mean.to(device)
            self.std.to(device)
        return self

    def __call__(self, x, **kwargs):
        return self.encoder(x, **kwargs)
    
def main():
    os.system("pip freeze")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    x_start_pipeline = YOSONormalsPipeline.from_pretrained(
        'Stable-X/yoso-normal-v0-1', trust_remote_code=True,
        t_start=300).to(device)
    dinov2_prior = DINOv2_Encoder(size=672)
    dinov2_prior.to(device)
    
    pipe = StableNormalPipeline.from_pretrained('Stable-X/stable-normal-v0-1', t_start=300, trust_remote_code=True,
                                                scheduler=HEURI_DDIMScheduler(prediction_type='sample', 
                                                                              beta_start=0.00085, beta_end=0.0120, 
                                                                              beta_schedule = "scaled_linear"))
    pipe.x_start_pipeline = x_start_pipeline
    pipe.prior = dinov2_prior
    pipe.to(device)
    
    try:
        import xformers
        pipe.enable_xformers_memory_efficient_attention()
    except:
        pass  # run without xformers

    run_demo_server(pipe)


if __name__ == "__main__":
    main()