File size: 12,014 Bytes
b353dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.configuration_utils import register_to_config, ConfigMixin
import pdb


class HEURI_DDIMScheduler(DDIMScheduler, SchedulerMixin, ConfigMixin):

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
            """
            Sets the discrete timesteps used for the diffusion chain (to be run before inference).

            Args:
                num_inference_steps (`int`):
                    The number of diffusion steps used when generating samples with a pre-trained model.
            """

            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps

            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
                )

            timesteps = torch.from_numpy(timesteps).to(device)
            naive_sampling_step = num_inference_steps //2

            self.naive_sampling_step = naive_sampling_step

            timesteps[:naive_sampling_step] = timesteps[naive_sampling_step] # refine on step 5 for 5 steps, then backward from step 6

            timesteps = [timestep + 1 for timestep in timesteps]

            self.timesteps = timesteps
            self.gap = self.config.num_train_timesteps // self.num_inference_steps
            self.prev_timesteps = [timestep for timestep in self.timesteps[1:]]
            self.prev_timesteps.append(torch.zeros_like(self.prev_timesteps[-1]))

    def step(
            self,
            model_output: torch.Tensor,
            timestep: int,
            prev_timestep: int,
            sample: torch.Tensor,
            eta: float = 0.0,
            use_clipped_model_output: bool = False,
            generator=None,
            cur_step=None,
            gauss_latent=None,
            variance_noise: Optional[torch.Tensor] = None,
            return_dict: bool = True,
        ) -> Union[DDIMSchedulerOutput, Tuple]:
            """
            Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
            process from the learned model outputs (most often the predicted noise).

            Args:
                model_output (`torch.Tensor`):
                    The direct output from learned diffusion model.
                timestep (`float`):
                    The current discrete timestep in the diffusion chain.
                pre_timestep (`float`):
                    next_timestep
                sample (`torch.Tensor`):
                    A current instance of a sample created by the diffusion process.
                eta (`float`):
                    The weight of noise for added noise in diffusion step.
                use_clipped_model_output (`bool`, defaults to `False`):
                    If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                    because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                    clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                    `use_clipped_model_output` has no effect.
                generator (`torch.Generator`, *optional*):
                    A random number generator.
                variance_noise (`torch.Tensor`):
                    Alternative to generating noise with `generator` by directly providing the noise for the variance
                    itself. Useful for methods such as [`CycleDiffusion`].
                return_dict (`bool`, *optional*, defaults to `True`):
                    Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.

            Returns:
                [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
                    If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                    tuple is returned where the first element is the sample tensor.

            """
            if self.num_inference_steps is None:
                raise ValueError(
                    "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
                )

            # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
            # Ideally, read DDIM paper in-detail understanding

            # Notation (<variable name> -> <name in paper>
            # - pred_noise_t -> e_theta(x_t, t)
            # - pred_original_sample -> f_theta(x_t, t) or x_0
            # - std_dev_t -> sigma_t
            # - eta -> η
            # - pred_sample_direction -> "direction pointing to x_t"
            # - pred_prev_sample -> "x_t-1"

            # 1. get previous step value (=t-1)
            # trick from heuri_sampling
            if cur_step == self.naive_sampling_step  and timestep == prev_timestep:
                timestep += self.gap

            prev_timestep = prev_timestep  # NOTE naive sampling

            # 2. compute alphas, betas
            alpha_prod_t = self.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

            beta_prod_t = 1 - alpha_prod_t

            # 3. compute predicted original sample from predicted noise also called
            # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            if self.config.prediction_type == "epsilon":
                pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
                pred_epsilon = model_output
            elif self.config.prediction_type == "sample":
                pred_original_sample = model_output
                pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
            elif self.config.prediction_type == "v_prediction":
                pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
                pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction`"
                )

            # 4. Clip or threshold "predicted x_0"
            if self.config.thresholding:
                pred_original_sample = self._threshold_sample(pred_original_sample)

            # 5. compute variance: "sigma_t(η)" -> see formula (16)
            # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
            variance = self._get_variance(timestep, prev_timestep)
            std_dev_t = eta * variance ** (0.5)

            if use_clipped_model_output:
                # the pred_epsilon is always re-derived from the clipped x_0 in Glide
                pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)

            # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon

            # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            if gauss_latent == None:
                gauss_latent = torch.randn_like(pred_original_sample)
            prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

            if eta > 0:
                if variance_noise is not None and generator is not None:
                    raise ValueError(
                        "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                        " `variance_noise` stays `None`."
                    )

                if variance_noise is None:
                    variance_noise = randn_tensor(
                        model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
                    )
                variance = std_dev_t * variance_noise

                prev_sample = prev_sample + variance

            if cur_step < self.naive_sampling_step:
                prev_sample = self.add_noise(pred_original_sample, gauss_latent, timestep)

            if not return_dict:
                return (prev_sample,)

            return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)



    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.IntTensor,
    ) -> torch.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples