File size: 12,019 Bytes
b89eee2
 
 
 
 
6781e5a
aff85de
b89eee2
 
 
 
 
 
6781e5a
 
 
 
b89eee2
 
 
 
 
 
 
6781e5a
 
10cae83
6781e5a
d12ce0d
b89eee2
6781e5a
 
 
 
 
 
 
 
 
 
 
b89eee2
6781e5a
b89eee2
6781e5a
 
 
d12ce0d
6781e5a
b89eee2
6781e5a
 
 
b89eee2
6781e5a
aff85de
 
 
6781e5a
 
 
2f3f0e6
0946842
2f3f0e6
 
 
 
0946842
 
2f3f0e6
 
 
 
0946842
 
 
 
2f3f0e6
6781e5a
 
 
 
 
 
 
 
2f3f0e6
6781e5a
 
 
 
2f3f0e6
6781e5a
 
 
 
b89eee2
 
6781e5a
 
 
 
 
b89eee2
6781e5a
 
 
 
 
 
 
 
b89eee2
 
6781e5a
 
 
 
 
 
 
 
b89eee2
 
6781e5a
 
b89eee2
6781e5a
b89eee2
 
 
 
 
 
 
 
 
 
6781e5a
b89eee2
6781e5a
 
 
b89eee2
6781e5a
 
5f27781
6781e5a
 
b89eee2
 
6781e5a
 
b89eee2
 
6781e5a
 
 
 
 
 
 
 
b89eee2
 
6781e5a
 
b89eee2
6781e5a
 
b89eee2
 
 
 
 
 
 
6781e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89eee2
6781e5a
 
 
b89eee2
6781e5a
 
b89eee2
6781e5a
b89eee2
6781e5a
b89eee2
6781e5a
 
 
b89eee2
6781e5a
 
 
 
 
b89eee2
 
6781e5a
 
 
 
b89eee2
 
 
6781e5a
 
 
b89eee2
 
6781e5a
 
b89eee2
6781e5a
b89eee2
 
 
6781e5a
 
 
 
 
 
 
 
 
 
b89eee2
 
6781e5a
 
b89eee2
6781e5a
 
b89eee2
 
6781e5a
 
 
 
 
 
 
 
 
 
 
b89eee2
6781e5a
 
 
 
 
b89eee2
 
6781e5a
b89eee2
 
6781e5a
 
 
 
 
b89eee2
 
6781e5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from __future__ import annotations

import functools
import os
import tempfile
import torch
import spaces
import gradio as gr
from PIL import Image
from gradio_imageslider import ImageSlider
from pathlib import Path
from gradio.utils import get_cache_folder

# Constants
DEFAULT_SHARPNESS = 2

class Examples(gr.helpers.Examples):
    def __init__(self, *args, directory_name=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if directory_name is not None:
            self.cached_folder = get_cache_folder() / directory_name
            self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()

def load_predictor():
    """Load model predictor using torch.hub"""
    predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal", trust_repo=True)
    return predictor

def process_image(
    predictor,
    path_input: str,
    sharpness: int = DEFAULT_SHARPNESS,
    data_type: str = "object"
) -> tuple:
    """Process single image"""
    if path_input is None:
        raise gr.Error("Please upload an image or select one from the gallery.")
        
    name_base = os.path.splitext(os.path.basename(path_input))[0]
    out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal.png")

    # Load and process image
    input_image = Image.open(path_input)
    normal_image = predictor(input_image, num_inference_steps=sharpness, 
                             match_input_resolution=False, data_type=data_type)
    normal_image.save(out_path)

    yield [input_image, out_path]

def create_demo():
    # Load model
    predictor = load_predictor()
    
    # Create processing functions for each data type
    process_object = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
    process_scene = spaces.GPU(functools.partial(process_image, predictor, data_type="indoor"))
    process_human = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))

    # Define markdown content
    HEADER_MD = """
    # 🎪 StableNormal_beta: The Not-So-Stable Edition! 🎢
    
    ### ✨ What's Cooking in Our Beta Kitchen? ✨
    - **Zoom Zoom**: 2x faster - because waiting is boring!
    - **Sharp as a Tack**: Better quality for those pixel-perfect folks
    - **Your Way**: Tweak the sharpness slider and watch the magic happen
    - **Pick Your Fighter**: Objects, Scenes, or Humans - we've got you covered!
    
    ### 🎯 Pro Tips
    - Start with lower sharpness for a quick, stable result
    - Want more details? Crank it up, but watch out for those floating bits!
    - Sweet spot is usually around 2-3 for most images 😉
    - If you get a flat result, try:
      * Different sharpness
      * Another image crop
      * Another mode
    
    <p align="center">
    <a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
    </a>
    <a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
    </a>
    <a title="Github" href="https://github.com/Stable-X/StableNormal" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://img.shields.io/github/stars/Stable-X/StableNormal?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
    </a>
    <a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
    </a>
    </p>
    """

    # Create interface
    demo = gr.Blocks(
        title="Stable Normal Estimation",
        css="""
            .slider .inner { width: 5px; background: #FFF; }
            .viewport { aspect-ratio: 4/3; }
            .tabs button.selected { font-size: 20px !important; color: crimson !important; }
            h1, h2, h3 { text-align: center; display: block; }
            .md_feedback li { margin-bottom: 0px !important; }
        """
    )

    with demo:
        gr.Markdown(HEADER_MD)

        with gr.Tabs() as tabs:
            # Object Tab
            with gr.Tab("Object"):
                with gr.Row():
                    with gr.Column():
                        object_input = gr.Image(label="Input Object Image", type="filepath")
                        object_sharpness = gr.Slider(
                            minimum=1,
                            maximum=10,
                            value=DEFAULT_SHARPNESS,
                            step=1,
                            label="Sharpness (inference steps)",
                            info="Higher values produce sharper results but take longer"
                        )
                        with gr.Row():
                            object_submit_btn = gr.Button("Compute Normal", variant="primary")
                            object_reset_btn = gr.Button("Reset")
                    with gr.Column():
                        object_output_slider = ImageSlider(
                            label="Normal outputs",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                Examples(
                    fn=process_object,
                    examples=sorted([
                        os.path.join("files", "object", name)
                        for name in os.listdir(os.path.join("files", "object"))
                        if os.path.exists(os.path.join("files", "object"))
                    ]),
                    inputs=[object_input],
                    outputs=[object_output_slider],
                    cache_examples=True,
                    directory_name="examples_object",
                    examples_per_page=50,
                )

            # Scene Tab
            with gr.Tab("Scene"):
                with gr.Row():
                    with gr.Column():
                        scene_input = gr.Image(label="Input Scene Image", type="filepath")
                        scene_sharpness = gr.Slider(
                            minimum=1,
                            maximum=10,
                            value=DEFAULT_SHARPNESS,
                            step=1,
                            label="Sharpness (inference steps)",
                            info="Higher values produce sharper results but take longer"
                        )
                        with gr.Row():
                            scene_submit_btn = gr.Button("Compute Normal", variant="primary")
                            scene_reset_btn = gr.Button("Reset")
                    with gr.Column():
                        scene_output_slider = ImageSlider(
                            label="Normal outputs",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                Examples(
                    fn=process_scene,
                    examples=sorted([
                        os.path.join("files", "scene", name)
                        for name in os.listdir(os.path.join("files", "scene"))
                        if os.path.exists(os.path.join("files", "scene"))
                    ]),
                    inputs=[scene_input],
                    outputs=[scene_output_slider],
                    cache_examples=True,
                    directory_name="examples_scene",
                    examples_per_page=50,
                )

            # Human Tab
            with gr.Tab("Human"):
                with gr.Row():
                    with gr.Column():
                        human_input = gr.Image(label="Input Human Image", type="filepath")
                        human_sharpness = gr.Slider(
                            minimum=1,
                            maximum=10,
                            value=DEFAULT_SHARPNESS,
                            step=1,
                            label="Sharpness (inference steps)",
                            info="Higher values produce sharper results but take longer"
                        )
                        with gr.Row():
                            human_submit_btn = gr.Button("Compute Normal", variant="primary")
                            human_reset_btn = gr.Button("Reset")
                    with gr.Column():
                        human_output_slider = ImageSlider(
                            label="Normal outputs",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                Examples(
                    fn=process_human,
                    examples=sorted([
                        os.path.join("files", "human", name)
                        for name in os.listdir(os.path.join("files", "human"))
                        if os.path.exists(os.path.join("files", "human"))
                    ]),
                    inputs=[human_input],
                    outputs=[human_output_slider],
                    cache_examples=True,
                    directory_name="examples_human",
                    examples_per_page=50,
                )

        # Event Handlers for Object Tab
        object_submit_btn.click(
            fn=lambda x, _: None if x else gr.Error("Please upload an image"),
            inputs=[object_input, object_sharpness],
            outputs=None,
            queue=False,
        ).success(
            fn=process_object,
            inputs=[object_input, object_sharpness],
            outputs=[object_output_slider],
        )

        object_reset_btn.click(
            fn=lambda: (None, DEFAULT_SHARPNESS, None),
            inputs=[],
            outputs=[object_input, object_sharpness, object_output_slider],
            queue=False,
        )

        # Event Handlers for Scene Tab
        scene_submit_btn.click(
            fn=lambda x, _: None if x else gr.Error("Please upload an image"),
            inputs=[scene_input, scene_sharpness],
            outputs=None,
            queue=False,
        ).success(
            fn=process_scene,
            inputs=[scene_input, scene_sharpness],
            outputs=[scene_output_slider],
        )

        scene_reset_btn.click(
            fn=lambda: (None, DEFAULT_SHARPNESS, None),
            inputs=[],
            outputs=[scene_input, scene_sharpness, scene_output_slider],
            queue=False,
        )

        # Event Handlers for Human Tab
        human_submit_btn.click(
            fn=lambda x, _: None if x else gr.Error("Please upload an image"),
            inputs=[human_input, human_sharpness],
            outputs=None,
            queue=False,
        ).success(
            fn=process_human,
            inputs=[human_input, human_sharpness],
            outputs=[human_output_slider],
        )

        human_reset_btn.click(
            fn=lambda: (None, DEFAULT_SHARPNESS, None),
            inputs=[],
            outputs=[human_input, human_sharpness, human_output_slider],
            queue=False,
        )

    return demo

def main():
    demo = create_demo()
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
    )

if __name__ == "__main__":
    main()