Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,992 Bytes
b89eee2 6781e5a aff85de b89eee2 6781e5a b89eee2 6781e5a 10cae83 6781e5a d12ce0d b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a d12ce0d 6781e5a b89eee2 6781e5a b89eee2 6781e5a aff85de 6781e5a 811201d 0946842 2f3f0e6 0946842 2f3f0e6 0946842 2f3f0e6 6781e5a 2f3f0e6 6781e5a 2f3f0e6 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a 5f27781 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from __future__ import annotations
import functools
import os
import tempfile
import torch
import spaces
import gradio as gr
from PIL import Image
from gradio_imageslider import ImageSlider
from pathlib import Path
from gradio.utils import get_cache_folder
# Constants
DEFAULT_SHARPNESS = 2
class Examples(gr.helpers.Examples):
def __init__(self, *args, directory_name=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if directory_name is not None:
self.cached_folder = get_cache_folder() / directory_name
self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
def load_predictor():
"""Load model predictor using torch.hub"""
predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal", trust_repo=True)
return predictor
def process_image(
predictor,
path_input: str,
sharpness: int = DEFAULT_SHARPNESS,
data_type: str = "object"
) -> tuple:
"""Process single image"""
if path_input is None:
raise gr.Error("Please upload an image or select one from the gallery.")
name_base = os.path.splitext(os.path.basename(path_input))[0]
out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal.png")
# Load and process image
input_image = Image.open(path_input)
normal_image = predictor(input_image, num_inference_steps=sharpness,
match_input_resolution=False, data_type=data_type)
normal_image.save(out_path)
yield [input_image, out_path]
def create_demo():
# Load model
predictor = load_predictor()
# Create processing functions for each data type
process_object = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
process_scene = spaces.GPU(functools.partial(process_image, predictor, data_type="indoor"))
process_human = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
# Define markdown content
HEADER_MD = """
# 🎪 StableNormal Turbo Beta
### ✨ What's Cooking in Our Beta Kitchen? ✨
- **Zoom Zoom**: 2x faster - because waiting is boring!
- **Sharp as a Tack**: Better quality for those pixel-perfect folks
- **Your Way**: Tweak the sharpness slider and watch the magic happen
- **Pick Your Fighter**: Objects, Scenes, or Humans - we've got you covered!
### 🎯 Pro Tips
- Start with lower sharpness for a quick, stable result
- Want more details? Crank it up, but watch out for those floating bits!
- Sweet spot is usually around 2-3 for most images 😉
- If you get a flat result, try:
* Different sharpness
* Another image crop
* Another mode
<p align="center">
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/StableNormal" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/StableNormal?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
"""
# Create interface
demo = gr.Blocks(
title="Stable Normal Estimation",
css="""
.slider .inner { width: 5px; background: #FFF; }
.viewport { aspect-ratio: 4/3; }
.tabs button.selected { font-size: 20px !important; color: crimson !important; }
h1, h2, h3 { text-align: center; display: block; }
.md_feedback li { margin-bottom: 0px !important; }
"""
)
with demo:
gr.Markdown(HEADER_MD)
with gr.Tabs() as tabs:
# Object Tab
with gr.Tab("Object"):
with gr.Row():
with gr.Column():
object_input = gr.Image(label="Input Object Image", type="filepath")
object_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
object_submit_btn = gr.Button("Compute Normal", variant="primary")
object_reset_btn = gr.Button("Reset")
with gr.Column():
object_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_object,
examples=sorted([
os.path.join("files", "object", name)
for name in os.listdir(os.path.join("files", "object"))
if os.path.exists(os.path.join("files", "object"))
]),
inputs=[object_input],
outputs=[object_output_slider],
cache_examples=True,
directory_name="examples_object",
examples_per_page=50,
)
# Scene Tab
with gr.Tab("Scene"):
with gr.Row():
with gr.Column():
scene_input = gr.Image(label="Input Scene Image", type="filepath")
scene_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
scene_submit_btn = gr.Button("Compute Normal", variant="primary")
scene_reset_btn = gr.Button("Reset")
with gr.Column():
scene_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_scene,
examples=sorted([
os.path.join("files", "scene", name)
for name in os.listdir(os.path.join("files", "scene"))
if os.path.exists(os.path.join("files", "scene"))
]),
inputs=[scene_input],
outputs=[scene_output_slider],
cache_examples=True,
directory_name="examples_scene",
examples_per_page=50,
)
# Human Tab
with gr.Tab("Human"):
with gr.Row():
with gr.Column():
human_input = gr.Image(label="Input Human Image", type="filepath")
human_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
human_submit_btn = gr.Button("Compute Normal", variant="primary")
human_reset_btn = gr.Button("Reset")
with gr.Column():
human_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_human,
examples=sorted([
os.path.join("files", "human", name)
for name in os.listdir(os.path.join("files", "human"))
if os.path.exists(os.path.join("files", "human"))
]),
inputs=[human_input],
outputs=[human_output_slider],
cache_examples=True,
directory_name="examples_human",
examples_per_page=50,
)
# Event Handlers for Object Tab
object_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[object_input, object_sharpness],
outputs=None,
queue=False,
).success(
fn=process_object,
inputs=[object_input, object_sharpness],
outputs=[object_output_slider],
)
object_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[object_input, object_sharpness, object_output_slider],
queue=False,
)
# Event Handlers for Scene Tab
scene_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[scene_input, scene_sharpness],
outputs=None,
queue=False,
).success(
fn=process_scene,
inputs=[scene_input, scene_sharpness],
outputs=[scene_output_slider],
)
scene_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[scene_input, scene_sharpness, scene_output_slider],
queue=False,
)
# Event Handlers for Human Tab
human_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[human_input, human_sharpness],
outputs=None,
queue=False,
).success(
fn=process_human,
inputs=[human_input, human_sharpness],
outputs=[human_output_slider],
)
human_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[human_input, human_sharpness, human_output_slider],
queue=False,
)
return demo
def main():
demo = create_demo()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
)
if __name__ == "__main__":
main() |