Stable-X's picture
Update app.py
0946842 verified
raw
history blame
12 kB
from __future__ import annotations
import functools
import os
import tempfile
import torch
import spaces
import gradio as gr
from PIL import Image
from gradio_imageslider import ImageSlider
from pathlib import Path
from gradio.utils import get_cache_folder
# Constants
DEFAULT_SHARPNESS = 2
class Examples(gr.helpers.Examples):
def __init__(self, *args, directory_name=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if directory_name is not None:
self.cached_folder = get_cache_folder() / directory_name
self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
def load_predictor():
"""Load model predictor using torch.hub"""
predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal", trust_repo=True)
return predictor
def process_image(
predictor,
path_input: str,
sharpness: int = DEFAULT_SHARPNESS,
data_type: str = "object"
) -> tuple:
"""Process single image"""
if path_input is None:
raise gr.Error("Please upload an image or select one from the gallery.")
name_base = os.path.splitext(os.path.basename(path_input))[0]
out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal.png")
# Load and process image
input_image = Image.open(path_input)
normal_image = predictor(input_image, num_inference_steps=sharpness,
match_input_resolution=False, data_type=data_type)
normal_image.save(out_path)
yield [input_image, out_path]
def create_demo():
# Load model
predictor = load_predictor()
# Create processing functions for each data type
process_object = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
process_scene = spaces.GPU(functools.partial(process_image, predictor, data_type="indoor"))
process_human = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
# Define markdown content
HEADER_MD = """
# 🎪 StableNormal_beta: The Not-So-Stable Edition! 🎢
### ✨ What's Cooking in Our Beta Kitchen? ✨
- **Zoom Zoom**: 2x faster - because waiting is boring!
- **Sharp as a Tack**: Better quality for those pixel-perfect folks
- **Your Way**: Tweak the sharpness slider and watch the magic happen
- **Pick Your Fighter**: Objects, Scenes, or Humans - we've got you covered!
### 🎯 Pro Tips
- Start with lower sharpness for a quick, stable result
- Want more details? Crank it up, but watch out for those floating bits!
- Sweet spot is usually around 2-3 for most images 😉
- If you get a flat result, try:
* Different sharpness
* Another image crop
* Another mode
<p align="center">
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/StableNormal" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/StableNormal?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
"""
# Create interface
demo = gr.Blocks(
title="Stable Normal Estimation",
css="""
.slider .inner { width: 5px; background: #FFF; }
.viewport { aspect-ratio: 4/3; }
.tabs button.selected { font-size: 20px !important; color: crimson !important; }
h1, h2, h3 { text-align: center; display: block; }
.md_feedback li { margin-bottom: 0px !important; }
"""
)
with demo:
gr.Markdown(HEADER_MD)
with gr.Tabs() as tabs:
# Object Tab
with gr.Tab("Object"):
with gr.Row():
with gr.Column():
object_input = gr.Image(label="Input Object Image", type="filepath")
object_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
object_submit_btn = gr.Button("Compute Normal", variant="primary")
object_reset_btn = gr.Button("Reset")
with gr.Column():
object_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_object,
examples=sorted([
os.path.join("files", "object", name)
for name in os.listdir(os.path.join("files", "object"))
if os.path.exists(os.path.join("files", "object"))
]),
inputs=[object_input],
outputs=[object_output_slider],
cache_examples=True,
directory_name="examples_object",
examples_per_page=50,
)
# Scene Tab
with gr.Tab("Scene"):
with gr.Row():
with gr.Column():
scene_input = gr.Image(label="Input Scene Image", type="filepath")
scene_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
scene_submit_btn = gr.Button("Compute Normal", variant="primary")
scene_reset_btn = gr.Button("Reset")
with gr.Column():
scene_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_scene,
examples=sorted([
os.path.join("files", "scene", name)
for name in os.listdir(os.path.join("files", "scene"))
if os.path.exists(os.path.join("files", "scene"))
]),
inputs=[scene_input],
outputs=[scene_output_slider],
cache_examples=True,
directory_name="examples_scene",
examples_per_page=50,
)
# Human Tab
with gr.Tab("Human"):
with gr.Row():
with gr.Column():
human_input = gr.Image(label="Input Human Image", type="filepath")
human_sharpness = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_SHARPNESS,
step=1,
label="Sharpness (inference steps)",
info="Higher values produce sharper results but take longer"
)
with gr.Row():
human_submit_btn = gr.Button("Compute Normal", variant="primary")
human_reset_btn = gr.Button("Reset")
with gr.Column():
human_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
Examples(
fn=process_human,
examples=sorted([
os.path.join("files", "human", name)
for name in os.listdir(os.path.join("files", "human"))
if os.path.exists(os.path.join("files", "human"))
]),
inputs=[human_input],
outputs=[human_output_slider],
cache_examples=True,
directory_name="examples_human",
examples_per_page=50,
)
# Event Handlers for Object Tab
object_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[object_input, object_sharpness],
outputs=None,
queue=False,
).success(
fn=process_object,
inputs=[object_input, object_sharpness],
outputs=[object_output_slider],
)
object_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[object_input, object_sharpness, object_output_slider],
queue=False,
)
# Event Handlers for Scene Tab
scene_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[scene_input, scene_sharpness],
outputs=None,
queue=False,
).success(
fn=process_scene,
inputs=[scene_input, scene_sharpness],
outputs=[scene_output_slider],
)
scene_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[scene_input, scene_sharpness, scene_output_slider],
queue=False,
)
# Event Handlers for Human Tab
human_submit_btn.click(
fn=lambda x, _: None if x else gr.Error("Please upload an image"),
inputs=[human_input, human_sharpness],
outputs=None,
queue=False,
).success(
fn=process_human,
inputs=[human_input, human_sharpness],
outputs=[human_output_slider],
)
human_reset_btn.click(
fn=lambda: (None, DEFAULT_SHARPNESS, None),
inputs=[],
outputs=[human_input, human_sharpness, human_output_slider],
queue=False,
)
return demo
def main():
demo = create_demo()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
)
if __name__ == "__main__":
main()