Spaces:
Runtime error
Runtime error
norm_cfg = dict(type='SyncBN', requires_grad=True) | |
data_preprocessor = dict( | |
type='SegDataPreProcessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_val=0, | |
seg_pad_val=255, | |
size=(416, 416)) | |
model = dict( | |
type='EncoderDecoder', | |
data_preprocessor=dict( | |
type='SegDataPreProcessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_val=0, | |
seg_pad_val=255, | |
size=(416, 416)), | |
pretrained='mmcls://mobilenet_v2', | |
backbone=dict( | |
type='MobileNetV2', | |
widen_factor=1.0, | |
strides=(1, 2, 2, 1, 1, 1, 1), | |
dilations=(1, 1, 1, 2, 2, 4, 4), | |
out_indices=(1, 2, 4, 6), | |
norm_cfg=dict(type='SyncBN', requires_grad=True)), | |
decode_head=dict( | |
type='DepthwiseSeparableASPPHead', | |
in_channels=320, | |
in_index=3, | |
channels=128, | |
dilations=(1, 12, 24, 36), | |
c1_in_channels=24, | |
c1_channels=12, | |
dropout_ratio=0.1, | |
num_classes=3, | |
norm_cfg=dict(type='SyncBN', requires_grad=True), | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
auxiliary_head=dict( | |
type='FCNHead', | |
in_channels=96, | |
in_index=2, | |
channels=64, | |
num_convs=1, | |
concat_input=False, | |
dropout_ratio=0.1, | |
num_classes=3, | |
norm_cfg=dict(type='SyncBN', requires_grad=True), | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), | |
train_cfg=dict(), | |
test_cfg=dict(mode='whole')) | |
dataset_type = 'DroneDataset' | |
data_root = 'data/drone_custom_dataset' | |
crop_size = (416, 416) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict( | |
type='RandomResize', | |
scale=(2048, 416), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 416), keep_ratio=True), | |
dict(type='LoadAnnotations'), | |
dict(type='PackSegInputs') | |
] | |
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] | |
tta_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict( | |
type='TestTimeAug', | |
transforms=[[{ | |
'type': 'Resize', | |
'scale_factor': 0.5, | |
'keep_ratio': True | |
}, { | |
'type': 'Resize', | |
'scale_factor': 0.75, | |
'keep_ratio': True | |
}, { | |
'type': 'Resize', | |
'scale_factor': 1.0, | |
'keep_ratio': True | |
}, { | |
'type': 'Resize', | |
'scale_factor': 1.25, | |
'keep_ratio': True | |
}, { | |
'type': 'Resize', | |
'scale_factor': 1.5, | |
'keep_ratio': True | |
}, { | |
'type': 'Resize', | |
'scale_factor': 1.75, | |
'keep_ratio': True | |
}], | |
[{ | |
'type': 'RandomFlip', | |
'prob': 0.0, | |
'direction': 'horizontal' | |
}, { | |
'type': 'RandomFlip', | |
'prob': 1.0, | |
'direction': 'horizontal' | |
}], [{ | |
'type': 'LoadAnnotations' | |
}], [{ | |
'type': 'PackSegInputs' | |
}]]) | |
] | |
train_dataloader = dict( | |
batch_size=24, | |
num_workers=1, | |
persistent_workers=True, | |
sampler=dict(type='InfiniteSampler', shuffle=True), | |
dataset=dict( | |
type='DroneDataset', | |
data_root='data/drone_custom_dataset', | |
data_prefix=dict(img_path='images', seg_map_path='anns'), | |
ann_file='train.txt', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict( | |
type='RandomResize', | |
scale=(2048, 416), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
])) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='DroneDataset', | |
data_root='data/drone_custom_dataset', | |
data_prefix=dict(img_path='images', seg_map_path='anns'), | |
ann_file='val.txt', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 416), keep_ratio=True), | |
dict(type='LoadAnnotations'), | |
dict(type='PackSegInputs') | |
])) | |
test_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='DroneDataset', | |
data_root='data/drone_custom_dataset', | |
data_prefix=dict(img_path='images', seg_map_path='anns'), | |
ann_file='val.txt', | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 416), keep_ratio=True), | |
dict(type='LoadAnnotations'), | |
dict(type='PackSegInputs') | |
])) | |
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) | |
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) | |
default_scope = 'mmseg' | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict( | |
type='SegLocalVisualizer', | |
vis_backends=[dict(type='LocalVisBackend')], | |
name='visualizer') | |
log_processor = dict(by_epoch=False) | |
log_level = 'INFO' | |
load_from = None | |
resume = False | |
tta_model = dict(type='SegTTAModel') | |
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005), | |
clip_grad=None) | |
param_scheduler = [ | |
dict( | |
type='PolyLR', | |
eta_min=0.0001, | |
power=0.9, | |
begin=0, | |
end=240000, | |
by_epoch=False) | |
] | |
train_cfg = dict( | |
type='IterBasedTrainLoop', max_iters=240000, val_interval=24000) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=24000), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='SegVisualizationHook')) | |
launcher = 'pytorch' | |
work_dir = './work_dirs/mobilenet_deeplab_drone' | |