Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install ctransformers gradio") | |
import time | |
import requests | |
from tqdm import tqdm | |
import ctransformers | |
import gradio as gr | |
if not os.path.isfile('./llama-2-7b.ggmlv3.q4_K_S.bin'): | |
print("Downloading Model from HuggingFace") | |
url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" | |
response = requests.get(url, stream=True) | |
total_size_in_bytes = int(response.headers.get('content-length', 0)) | |
block_size = 1024 # 1 Kibibyte | |
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) | |
with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
file.write(data) | |
progress_bar.close() | |
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: | |
print("ERROR, something went wrong") | |
configObj = ctransformers.Config(stop=["\n", 'User']) | |
config = ctransformers.AutoConfig(config=configObj, model_type='llama') | |
config.config.stop = ["\n"] | |
llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) | |
print("Loaded model") | |
def complete(prompt, stop=["User", "Assistant"]): | |
print("0") | |
tokens = llm.tokenize(prompt) | |
print("1") | |
token_count = 0 | |
output = '' | |
print("2") | |
for token in llm.generate(tokens): | |
print("tokens") | |
token_count += 1 | |
result = llm.detokenize(token) | |
print("detokens") | |
output += result | |
print(output) | |
for word in stop: | |
if word in output: | |
print(output, " | ", token_count) | |
return output, token_count | |
return output, token_count | |
def greet(question): | |
print(question) | |
output, token_count = complete(f'User: {question}. Can you please answer this as informatively but concisely as possible.\nAssistant: ') | |
response = f"Response: {output} | Tokens: {token_count}" | |
print(response) | |
return response | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch(share=True) | |